Accepted Manuscript

Antithrombotic Therapy for VTE Disease: CHEST Guideline

Clive Kearon, MD, PhD, Elie A. Akl, MD, MPH, PhD, Joseph Ornelas, PhD, Allen Blaivas, DO, FCCP, David Jimenez, MD, PhD, FCCP, Henri Bounameaux, MD, Menno Huisman, MD, PhD, Christopher S. King, MD, FCCP, Timothy Morris, MD, FCCP, Namita Sood, MD, FCCP, Scott M. Stevens, MD, Janine R.E. Vintch, MD, FCCP, Philip Wells, MD, Scott C. Woller, MD, Col. Lisa Moores, MD, FCCP

PII: S0012-3692(15)00335-9

DOI: 10.1016/j.chest.2015.11.026

Reference: CHEST 203

To appear in: CHEST

Received Date: 18 June 2015

Revised Date: 24 November 2015

Accepted Date: 25 November 2015

Please cite this article as: Kearon C, Akl EA, Ornelas J, Blaivas A, Jimenez D, Bounameaux H, Huisman M, King CS, Morris T, Sood N, Stevens SM, Vintch JRE, Wells P, Woller SC, Moores CL, Antithrombotic Therapy for VTE Disease: CHEST Guideline, *CHEST* (2016), doi: 10.1016/j.chest.2015.11.026.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Word Count: 12,840

2
)
~

3 Antithrombotic Therapy for VTE Disease: CHEST Guideline

4

E	Clive Kearon,	MD DhD	• Elio A Abl	MD MDH	DhD. La	conh Ornolac	DhD
5	Clive Keuron,	MD, I nD	, Επε Α. Ακι	, MD, MI II	, I nD, J03	seph Orneius,	I nD,

- 6 Allen Blaivas, DO, FCCP; David Jimenez, MD, PhD, FCCP; Henri Bounameaux, MD; Menno
- 7 Huisman, MD, PhD; Christopher S. King, MD, FCCP; Timothy Morris, MD, FCCP; Namita

8 Sood, MD, FCCP; Scott M. Stevens, MD; Janine R. E. Vintch, MD, FCCP; Philip Wells, MD;

9 Scott C. Woller, MD; Col. Lisa Moores, MD, FCCP

10

Affiliations: McMaster University (Dr. Kearon), Hamilton, ON; American University of Beirut 11 (Dr. Akl), Beirut, Lebanon; CHEST (Dr. Ornelas), Glenview, IL; VA New Jersey Health Care 12 System (Dr. Blaivas), Newark, NJ; Instituto Ramón y Cajal de Investigación Sanitaria (Dr. 13 Jimenez), Madrid, Spain; University of Geneva (Dr. Bounameaux), Geneva, Switzerland; Leiden 14 University Medical Center (Dr. Huisman), Leiden, Netherlands; Virginia Commonwealth 15 University (Dr. King), Falls Church, VA; University of California (Dr. Morris), San Diego, CA; 16 The Ohio State University (Dr. Sood), Columbus, OH; Intermountain Medical Center and the 17 University of Utah (Drs. Stevens and Woller), Murray, UT; Harbor-UCLA Medical Center (Dr. 18 Vintch), Torrance, CA: The University of Ottawa and Ottawa Hospital Research Institute (Dr. 19 20 Wells), Ottawa, ON; Uniformed Services University of the Health Sciences (Dr. Moores), Bethesda, MD. 21

23 Correspondence to: Elie A. Akl, MD, MPH, PhD. Associate Professor of Medicine,

Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Lebanon;
email: ea32@aub.edu.lb

26

Disclosures: In the past three years, Dr. Akl was an author on a number of systematic reviews on 27 anticoagulation in patients with cancer. Dr. Bounameaux has received compensation for 28 participation on advisory committees with speaking engagements sponsored by Sanofi-Aventis, 29 Bayer Healthcare and Daiichi-Sankyo. His institution has received grant funding (no salary 30 31 support) from Daiichi-Sankyo for studying VTE treatment. He has also served as a co-author of original studies using rivaroxaban (Einstein, Einstein PE) and edoxaban (Hokusai). Dr. Huisman 32 has received grant funding and has delivered talks related to long-term and extended 33 34 anticoagulation and treatment of subsegmental PE. He has also authored several papers related to long-term and extended anticoagulation, treatment of subsegmental PE and compression 35 stocking in preventing post-thrombotic syndrome. Dr. Jimenez's institution has received grant 36 funding (no salary support) from Instituto de salud Carlos III, Sociedad Española de Neumología 37 y Cirugía Torácica, and NeumoMadrid for studying pulmonary embolism. He is a member of 38 Steering Committee of PEITHO, a principal investigator of an original study related to Role of 39 IVC filter in addition to anticoagulation in patients with acute DVT or PE and has participated in 40 the derivation of scores for identification of low risk PE. Dr. Kearon has been compensated for 41 speaking engagements sponsored by Boehringer Ingelheim and Bayer Healthcare related to VTE 42 therapy. His institution has received grant funding (no salary support) from the NIH related to 43 the topic of catheter assisted thrombus removal in patients with leg DVT. He has also published 44 45 many studies related to long-term anticoagulation and compression stockings in preventing post

thrombotic syndrome. Dr. Moores has frequently lectured on the duration of long-term 46 anticoagulation and is a co-author on several risk-stratification papers. Drs. Moores and King 47 have received honoraria from Chest Enterprises for VTE Prep Courses. Dr. Morris' institution 48 has received grant funding (no salary support) from Portola Pharmaceuticals for APEX clinical 49 trial related to extended prophylaxis against venous thromboembolism with betrixaban. He has 50 also authored textbook chapters related to thrombolytic interventions in patients with acute PE 51 and pulmonary thromboendarterectomy in chronic thromboembolic pulmonary hypertension. Dr. 52 Stevens' and Woller's institution has received grant funding (no salary support) from Canadian 53 54 Institutes of Health for the D-dimer Optimal Duration Study Phase II (DODS-Extension), from Washington University via the National Institutes of Health (GIFT Trial), Bayer related to VTE 55 (EINSTEIN studies), and from Bristol-Myers Squibb related to apixaban for the Secondary 56 prevention of Thromboembolism (ASTRO-APS). Dr. Vintch's institution has received grant 57 funding (no salary support) from Bristol-Myers Squibb for evaluating the role of apixaban for 58 long-term treatment of VTE. Dr. Wells is a co-investigator on a grant regarding the treatment of 59 subsegmental PE. He has authored several studies (including NOAC) and grants related to the 60 long-term and extended anticoagulation. Dr. Wells has received grant funding from Bristol-61 Myers Squibb and has received honoraria for talks from Bayer. Drs. Akl, Bounameaux, Kearon 62 and Wells and Woller participated in the last edition of the CHEST Antithrombotic Therapy for 63 VTE Disease Guidelines (AT9). Drs. Blaivas, Ornelas and Sood have nothing to disclose. 64 65

Funding Information: This guideline was supported solely by internal funds from CHEST.

68	Endorsements: This guideline is endorsed by the American Association for Clinical Chemistry,
69	the American College of Clinical Pharmacy, the International Society for Thrombosis and
70	Haemostasis, and the American Society of Health-System Pharmacists.
71	
72	Disclaimer: American College of Chest Physician guidelines are intended for general
73	information only, are not medical advice, and do not replace professional medical care and
74	physician advice, which always should be sought for any medical condition. The complete
75	disclaimer for this guideline can be accessed at http://www.chestnet.org/Guidelines-and-
76	Resources/Guidelines-and-Consensus-Statements/CHEST-Guidelines
77	
78	© 2015 American College of Chest Physicians. Reproduction of this article is prohibited
79	without written permission from the American College of Chest Physicians
80	(http://www.chestpubs.org/site/misc/reprints.xhtml).
81	
82	DOI: XX.XXXX/chest.XX-XXXX
83	
84	
85	
86	

87 Abstract

88

Background: We update recommendations on 12 topics that were in the 9th edition of these 89 guidelines, and address 3 new topics. 90 Methods: We generate strong (Grade 1) and weak (Grade 2) recommendations based on high 91 92 (Grade A), moderate (Grade B) and low (Grade C) quality evidence. **Results:** For VTE and no cancer, as long-term anticoagulant therapy, we suggest dabigatran 93 (Grade 2B), rivaroxaban (Grade 2B), apixaban (Grade 2B) or edoxaban (Grade 2B) over VKA 94 95 therapy, and suggest VKA therapy over LMWH (Grade 2C). For VTE and cancer, we suggest LMWH over VKA (Grade 2B), dabigatran (Grade 2C), rivaroxaban (Grade 2C), apixaban 96 (Grade 2C) or edoxaban (Grade 2C). We have not changed recommendations for who should 97 stop anticoagulation at 3 months or receive extended therapy. For VTE treated with 98 anticoagulants, we recommend against an IVC filter (Grade 1B). For DVT, we suggest not using 99 compression stockings routinely to prevent PTS (Grade 2B). For subsegmental PE and no 100 101 proximal DVT, we suggest clinical surveillance over anticoagulation with a low risk of recurrent VTE (Grade 2C), and anticoagulation over clinical surveillance with a high risk (Grade 2C). We 102 suggest thrombolytic therapy for PE with hypotension (Grade 2B), and systemic therapy over 103 catheter directed thrombolysis (Grade 2C). For recurrent VTE on a non-LMWH anticoagulant, 104 105 we suggest LMWH (Grade 2C), and for recurrent VTE on LMWH we suggest increasing the 106 LMWH dose (Grade 2C). **Conclusion:** Of 54 recommendations included in the 30 statements, 20 were strong and none 107

108 was based on high quality evidence highlighting the need for further research.

109 *CHEST 201X;XX(X):XXXX-XXXX*

110	Abbreviations: $AT9 = The 9^{th}$ Edition of the Antithrombotic Guideline; $AT10 = The 10^{th}$
111	Edition of the Antithrombotic Guideline; CHEST = American College of Chest Physicians; COI
112	= conflict of interest; CDT = Catheter-Directed Thrombolysis; CT = Computerized Tomography;
113	CTEPH = Chronic Thromboembolic Pulmonary Hypertension; CTPA = Computerized
114	Tomography Pulmonary Angiogram; DVT= deep vein thrombosis; GOC = Guidelines Oversight
115	Committee; INR = International Normalized Ratio; IVC = Inferior Vena Cava; LMWH = Low
116	Molecular Weight Heparin; MeSH = Medical Subject Heading; NOAC = non-vitamin K oral
117	anticoagulant; PE= pulmonary embolism; PESI = Pulmonary Embolism Severity Index; PICO =
118	evidence questions addressing patient population, intervention, comparator, and outcome; PTS =
119	Post-Thrombotic Syndrome; RCT = randomized controlled trial; VKA = Vitamin K Antagonist;
120	VTE = venous thromboembolism; UEDVT = Upper Extremity Deep Vein Thrombosis; US =
121	Ultrasound
122	
123	
124	

125	Summary of Recommendations
126	
127	Note on Shaded Text: In this guideline, shading is used within the summary of
128	recommendations to indicate recommendations that are newly added or have been changed since
129	the publication of Antithrombotic therapy for VTE disease: Antithrombotic Therapy and
130	Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based
131	Clinical Practice Guidelines. Recommendations that remain unchanged since that edition are
132	not shaded. The order of our presentation of the NOACS (dabigatran, rivaroxaban, apixaban,
133	edoxaban) is based on the chronology of publication of the phase 3 trials in VTE treatment and
134	should not be interpreted as the guideline panel's order of preference for the use of these agents.
135	
136	
137	Choice of Long-Term (First 3 Months) and Extended (No Scheduled Stop Date)
138	Anticoagulant
139	
140	1. In patients with proximal DVT or PE, we recommend long-term (3 months)
141	anticoagulant therapy over no such therapy (Grade 1B).
142	
143	2. In patients with DVT of the leg or PE and no cancer, as long-term (first 3 months)
144	anticoagulant therapy, we suggest dabigatran, rivaroxaban, apixaban or edoxaban
145	over VKA therapy (all Grade 2B). For patients with DVT of the leg or PE and no
146	cancer who are not treated with dabigatran, rivaroxaban, apixaban or edoxaban, we
147	suggest VKA therapy over LMWH (Grade 2C).

148		Remarks: Initial parenteral anticoagulation is given before dabigatran and edoxaban, is
149		not given before rivaroxaban and apixaban, and is overlapped with VKA therapy. See
150		text for factors that influence choice of therapy.
151		
152	3.	In patients with DVT of the leg or PE and cancer ("cancer-associated thrombosis"),
153		as long-term (first 3 months) anticoagulant therapy, we suggest LMWH over VKA
154		therapy (Grade 2C), dabigatran (Grade 2C), rivaroxaban (Grade 2C), apixaban
155		(Grade 2C) or edoxaban (Grade 2C).
156		Remarks: Initial parenteral anticoagulation is given before dabigatran and edoxaban, is
157		not given before rivaroxaban and apixaban, and is overlapped with VKA therapy. See
158		text for factors that influence choice of therapy.
159		
160	4.	In patients with DVT of the leg or PE who receive extended therapy, we suggest that
161		there is no need to change the choice of anticoagulant after the first 3 months (Grade
162		2C).
163		Remarks: It may be appropriate for the choice of anticoagulant to change in response to
164		changes in the patient's circumstances or preferences during the long-term or extended
165		phases of treatment.
166		
167		
168	<u>Durat</u>	ion of Anticoagulant Therapy
169		
170	5.	In patients with a proximal DVT of the leg or PE provoked by surgery, we
171		recommend treatment with anticoagulation for 3 months over (i) treatment of a

172		shorter period (Grade 1B), (ii) treatment of a longer time-limited period (e.g. 6, 12 or
173		24 months) (Grade 1B), or (iii) extended therapy (no scheduled stop date) (Grade
174		1B).
175		
176	б.	In patients with a proximal DVT of the leg or PE provoked by a nonsurgical
177		transient risk factor, we recommend treatment with anticoagulation for 3 months
178		over (i) treatment of a shorter period (Grade 1B), and (ii) treatment of a longer time-
179		limited period (e.g. 6, 12 or 24 months) (Grade 1B). We suggest treatment with
180		anticoagulation for 3 months over extended therapy if there is a low or moderate
181		bleeding risk (Grade 2B), and recommend treatment for 3 months over extended
182		therapy if there is a high risk of bleeding (Grade 1B).
183		Remarks: In all patients who receive extended anticoagulant therapy, the continuing use
184		of treatment should be reassessed at periodic intervals (e.g. annually).
185		
186	7.	In patients with an isolated distal DVT of the leg provoked by surgery or by a
187		nonsurgical transient risk factor, we suggest treatment with anticoagulation for 3
188		months over treatment of a shorter period (Grade 2C), we recommend treatment
189		with anticoagulation for 3 months over treatment of a longer time-limited period
190		(e.g. 6, 12 or 24 months) (Grade 1B), and we recommend treatment with
191		anticoagulation for 3 months over extended therapy (no scheduled stop date) (Grade
192		1B).
193		Remarks: Duration of treatment of patients with isolated distal DVT refers to patients in
194		whom a decision has been made to treat with anticoagulant therapy; however, it is

195	anticipated that not all patients who are diagnosed with isolated distal DVT will be
196	prescribed anticoagulants.

197

198	8.	In patients with an unprovoked DVT of the leg ((isolated distal or proximal) or PE,
199		we recommend treatment with anticoagulation f	for at least 3 months over treatment
200		of a shorter duration (Grade 1B), and we recomm	mend treatment with anticoagulation
201		for 3 months over treatment of a longer time-lin	nited period (e.g. 6, 12 or 24 months)
202		(Grade 1B).	S

Remarks: After 3 months of treatment, patients with unprovoked DVT of the leg or PE
should be evaluated for the risk-benefit ratio of extended therapy. Duration of treatment
of patients with isolated distal DVT refers to patients in whom a decision has been made
to treat with anticoagulant therapy; however, it is anticipated that not all patients who are
diagnosed with isolated distal DVT will be prescribed anticoagulants.

208

209 9. In patients with a first VTE that is an unprovoked proximal DVT of the leg or PE

and who have a (i) low or moderate bleeding risk (see text), we suggest extended

anticoagulant therapy (no scheduled stop date) over 3 months of therapy (Grade 2B),

and a (ii) high bleeding risk (see text), we recommend 3 months of anticoagulant

213 therapy over extended therapy (no scheduled stop date) (Grade 1B).

Remarks: Patient sex and D-dimer level measured a month after stopping anticoagulant
therapy may influence the decision to stop or extend anticoagulant therapy (see text). In
all patients who receive extended anticoagulant therapy, the continuing use of treatment
should be reassessed at periodic intervals (e.g. annually).

218		
219	10.	In patients with a second unprovoked VTE and who have a (i) low bleeding risk (see
220		text), we recommend extended anticoagulant therapy (no scheduled stop date) over
221		3 months (Grade 1B), (ii) moderate bleeding risk (see text), we suggest extended
222		anticoagulant therapy over 3 months of therapy (Grade 2B), and (iii) high bleeding
223		risk (see text), we suggest 3 months of anticoagulant therapy over extended therapy
224		(no scheduled stop date) (Grade 2B).
225		Remarks: In all patients who receive extended anticoagulant therapy, the continuing use
226		of treatment should be reassessed at periodic intervals (e.g. annually).
227		
228	11.	In patients with DVT of the leg or PE and active cancer ("cancer-associated
229		thrombosis'') and who (i) do not have a high bleeding risk, we recommend extended
230		anticoagulant therapy (no scheduled stop date) over 3 months of therapy (Grade 1B),
231		and (ii) have a high bleeding risk, we suggest extended anticoagulant therapy (no
232		scheduled stop date) over 3 months of therapy (Grade 2B).
233		Remarks: In all patients who receive extended anticoagulant therapy, the continuing use
234		of treatment should be reassessed at periodic intervals (e.g. annually).
235		
236		\mathbf{C}^{-}
237	<u>Aspir</u>	in for Extended Treatment of Venous Thromboembolism
238		

239	12.	In patients with an unprovoked proximal DVT or PE who are stopping
240		anticoagulant therapy and do not have a contraindication to aspirin, we suggest
241		aspirin over no aspirin to prevent recurrent VTE (Grade 2C).
242		Remarks: Because aspirin is expected to be much less effective at preventing recurrent
243		VTE than anticoagulants, we do not consider aspirin a reasonable alternative to
244		anticoagulant therapy in patients who want extended therapy. However, if a patient has
245		decided to stop anticoagulants, prevention of recurrent VTE is one of the benefits of
246		aspirin that needs to be balanced against aspirin's risk of bleeding and inconvenience. Use
247		of aspirin should also be reevaluated when patients stop anticoagulant therapy because
248		aspirin may have been stopped when anticoagulants were started.
249		
250		
251	Whet	her and How to Anticoagulate Isolated Distal Deep Vein Thrombosis
252		
253	13.	In patients with acute isolated distal DVT of the leg and (i) without severe symptoms
254		or risk factors for extension (see text), we suggest serial imaging of the deep veins
255		for 2 weeks over anticoagulation (Grade 2C), and (ii) with severe symptoms or risk
256		factors for extension (see text), we suggest anticoagulation over serial imaging of the
257		deep veins (Grade 2C).
258		Remarks: Patients at high risk for bleeding are more likely to benefit from serial imaging.
259		Patients who place a high value on avoiding the inconvenience of repeat imaging and a
260		low value on the inconvenience of treatment and on the potential for bleeding are likely
261		to choose initial anticoagulation over serial imaging

262		
263	14.	In patients with acute isolated distal DVT of the leg who are managed with
264		anticoagulation, we recommend using the same anticoagulation as for patients with
265		acute proximal DVT (Grade 1B).
266		
267	15.	In patients with acute isolated distal DVT of the leg who are managed with serial
268		imaging, we (i) recommend no anticoagulation if the thrombus does not extend
269		(Grade 1B), (ii) suggest anticoagulation if the thrombus extends but remains
270		confined to the distal veins (Grade 2C), and (iii) recommend anticoagulation if the
271		thrombus extends into the proximal veins (Grade 1B).
272		
273		
274	<u>Cathe</u>	ter-Directed Thrombolysis for Acute Deep Vein Thrombosis of the Leg
275	16.	In patients with acute proximal DVT of the leg, we suggest anticoagulant therapy
276		alone over catheter-directed thrombolysis (CDT) (Grade 2C).
277		Remarks: Patients who are most likely to benefit from CDT (see text), who attach a high
278		value to prevention of post thrombotic syndrome (PTS), and a lower value to the initial
279		complexity, cost, and risk of bleeding with CDT, are likely to choose CDT over
280		anticoagulation alone.
281		
282		
283	Role o	f Inferior Vena Caval Filter in Addition to Anticoagulation for Acute Deep Vein
284	<u>Thron</u>	nbosis or Pulmonary Embolism

285		
286	17.	In patients with acute DVT or PE who are treated with anticoagulants, we
287		recommend against the use of an IVC filter (Grade 1B).
288		
289		
290	<u>Comp</u>	pression Stocking to Prevent Post-Thrombotic Syndrome
291		
292	18.	In patients with acute DVT of the leg, we suggest not using compression stockings
293		routinely to prevent PTS (Grade 2B).
294		Remarks: This recommendation focuses on prevention of the chronic complication of
295		PTS and not on the treatment of symptoms. For patients with acute or chronic symptoms,
296		a trial of graduated compression stockings is often justified.
297		
298		
299	<u>Whetl</u>	her to Anticoagulate Subsegmental Pulmonary Embolism
300		
301	19.	In patients with subsegmental PE (no involvement of more proximal pulmonary
302		arteries) and no proximal DVT in the legs who have a (i) low risk for recurrent VTE
303		(see text), we suggest clinical surveillance over anticoagulation (Grade 2C), and (ii)
304		high risk for recurrent VTE (see text), we suggest anticoagulation over clinical
305		surveillance (Grade 2C).
306		Remarks: Ultrasound imaging of the deep veins of both legs should be done to exclude
307		proximal DVT. Clinical surveillance can be supplemented by serial ultrasound imaging

308		of the proximal deep veins of both legs to detect evolving DVT (see text). Patients and
309		physicians are more likely to opt for clinical surveillance over anticoagulation if there is
310		good cardiopulmonary reserve or a high risk of bleeding.
311		
312		
313	Treat	nent of Acute Pulmonary Embolism Out of Hospital
314		
315	20.	In patients with low-risk PE and whose home circumstances are adequate, we
316		suggest treatment at home or early discharge over standard discharge (e.g. after
317		first 5 days of treatment) (Grade 2B).
318		
319		
320	System	nic Thrombolytic Therapy for Pulmonary Embolism
321		
322	21.	In patients with acute PE associated with hypotension (e.g. systolic BP <90 mm Hg)
323		who do not have a high bleeding risk, we suggest systemically administered
324		thrombolytic therapy over no such therapy (Grade 2B).
325		
326	22.	In most patients with acute PE not associated with hypotension, we recommend
327		against systemically administered thrombolytic therapy (Grade 1B).
328		
329	23.	In selected patients with acute PE who deteriorate after starting anticoagulant
330		therapy but have yet to develop hypotension and who have a low bleeding risk, we

331		suggest systemically administered thrombolytic therapy over no such therapy
332		(Grade 2C).
333		Remarks: Patients with PE and without hypotension who have severe symptoms or
334		marked cardiopulmonary impairment should be monitored closely for deterioration.
335		Development of hypotension suggests that thrombolytic therapy has become indicated.
336		Cardiopulmonary deterioration (e.g. symptoms, vital signs, tissue perfusion, gas
337		exchange, cardiac biomarkers) that has not progressed to hypotension may also alter the
338		risk-benefit assessment in favor of thrombolytic therapy in patients initially treated with
339		anticoagulation alone.
340		
341		
342	<u>Cathe</u>	ter-Based Thrombus Removal for the Initial Treatment of Pulmonary Embolism
343		
344	24.	In patients with acute PE who are treated with a thrombolytic agent, we suggest
345		systemic thrombolytic therapy using a peripheral vein over catheter directed
346		thrombolysis (CDT) (Grade 2C).
347		Remarks: Patients who have a higher risk of bleeding with systemic thrombolytic
348		therapy, and who have access to the expertise and resources required to do CDT, are
349		likely to choose CDT over systemic thrombolytic therapy.
350		
351	25.	In patients with acute PE associated with hypotension and who have (i) a high
352		bleeding risk, (ii) failed systemic thrombolysis, or (iii) shock that is likely to cause
353		death before systemic thrombolysis can take effect (e.g. within hours), if appropriate

354		expertise and resources are available, we suggest catheter assisted thrombus
355		removal over no such intervention (Grade 2C).
356		Remarks: Catheter assisted thrombus removal refers to mechanical interventions, with or
357		without catheter directed thrombolysis.
358		
359		
360	Pulm	onary Thromboendarterectomy for the Treatment of Chronic Thromboembolic
361	Pulm	onary Hypertension
362		
363	26.	In selected patients with CTEPH who are identified by an experienced
364		thromboendarterectomy team, we suggest pulmonary thromboendarterectomy over
365		no pulmonary thromboendarterectomy (Grade 2C).
366		Remarks: Patients with CTEPH should be evaluated by a team with expertise in treatment
367		of pulmonary hypertension. Pulmonary thromboendarterectomy is often life saving and
368		life transforming. Patients with CTEPH who are not candidates for pulmonary
369		thromboendarterectomy may benefit from other mechanical and pharmacological
370		interventions designed to lower pulmonary arterial pressure.
371		
372		
373	<u>Throi</u>	<u>nbolytic Therapy in Patients with Upper Extremity Deep Vein Thrombosis</u>
374		
375	27.	In patients with acute UEDVT that involves the axillary or more proximal veins, we
376		suggest anticoagulant therapy alone over thrombolysis (Grade 2C).

377		Remarks: Patients who (i) are most likely to benefit from thrombolysis (see text); (ii)
378		have access to CDT; (iii) attach a high value to prevention of PTS; and (iv) attach a lower
379		value to the initial complexity, cost, and risk of bleeding with thrombolytic therapy are
380		likely to choose thrombolytic therapy over anticoagulation alone.
381		
382	28.	In patients with UEDVT who undergo thrombolysis, we recommend the same
383		intensity and duration of anticoagulant therapy as in patients with UEDVT who do
384		not undergo thrombolysis (Grade 1B).
385		
386		
387	Mana	agement of Recurrent Venous Thromboembolism on Anticoagulant Therapy
388		
389	29.	In patients who have recurrent VTE on VKA therapy (in the therapeutic range) or
390		on dabigatran, rivaroxaban, apixaban or edoxaban (and are believed to be
391		compliant), we suggest switching to treatment with LMWH at least temporarily
392		(Grade 2C).
393		Remarks: Recurrent VTE while on therapeutic-dose anticoagulant therapy is unusual and
394		should prompt the following assessments: (1) reevaluation of whether there truly was a
395		recurrent VTE; (2) evaluation of compliance with anticoagulant therapy; and (3)
396		consideration of an underlying malignancy. A temporary switch to LMWH will usually
397		be for at least one month.
398		

399	30.	In patients who have recurrent VTE on long-term LMWH (and are believed to be
400		compliant) we suggest increasing the dose of LMWH by about one-quarter to one-
401		third (Grade 2C).
402		Remarks: Recurrent VTE while on therapeutic-dose anticoagulant therapy is unusual and
403		should prompt the following assessments: (1) reevaluation of whether there truly was a
404		recurrent VTE; (2) evaluation of compliance with anticoagulant therapy; and (3)
405		consideration of an underlying malignancy.
406		
407		
		CERTER MAR

CHEST has been developing and publishing guidelines for the treatment of deep vein thrombosis 408 (DVT) and pulmonary embolism (PE), collectively referred to as venous thromboembolism 409 (VTE), for more than 30 years. CHEST published the last (9th) edition of these guidelines in 410 February 2012 (AT9).¹ Since then, a substantial amount of new evidence relating to the treatment 411 of VTE has been published, particularly in relation the use of non-vitamin K oral anticoagulants 412 (NOACs). Moreover, a number of VTE treatment questions that were not addressed in the last 413 edition have been highlighted. This article focuses on new developments and ongoing 414 controversies in the treatment of VTE, updating recommendations for 12 topics that were 415 included in AT9 and providing recommendations for 3 new topics. The target users of this 416 guideline are clinicians. 417

418

419

421	Methods
422	
423	
424	Composition and Selection of Topic Panel Members
425	
426	The Guidelines Oversight Committee (GOC) at CHEST appointed the editor for the guideline
427	update. Then, the editor nominated the project executive committee, the chair and the remaining
428	panelists (see acknowledgements section). The GOC approved all panelists after review of their
429	qualifications and conflict of interest (COI) disclosures. The 15 panelists include general
430	internists, thrombosis specialists, pulmonologists, hematologists and methodologists.
431	
432	Throughout guideline development, panelists were required to disclose any potential financial or
433	intellectual conflicts of interest by topic. ² Financial and intellectual conflicts of interest were
434	classified as primary (more serious) or secondary (less serious) (eTable 1). Panelists with
435	primary COI were required to abstain from voting on related topic areas, but could participate in
436	discussions provided they refrained from strong advocacy.
437	
438	
439	Selection of Topics and Key Questions
440	
441	First, we listed all of the topic areas from AT9 and added potential new topics proposed by the
442	panel members. Next, all panel members voted on whether each topic should be included in the
443	update. Finally, the full-panel reviewed the results of the vote and decided on the final list. The

panel selected a total of 15 topics: 12 "update topics" from AT9 and 3 "new topics". For each

445	topic, we developed standardized questions in the PICO (Population, Intervention, Comparator,
446	Outcome) format (eTable 2).
447	
448	Systematic Search
449	
450	Systematic methods were used to search for evidence for each question. When available, the
451	National Library of Medicine's medical subject headings (MeSH) keyword nomenclature was
452	used. We searched MEDLINE via PubMed for original studies and the Cochrane Library for
453	systematic reviews. For update topics, we searched the literature from January 2005 to July
454	2014. For new topics, we searched the literature from 1946 (Medline inception) to July 2014. All
455	searches were limited to English language publications. We augmented searches by checking
456	reference lists of published articles and personal files, and with ongoing surveillance of the
457	literature by panel members (eFigures 1-4).
458	
459	When we identified systematic reviews, we assessed their quality according to the AMSTAR
460	tool. ³ We used those that were of highest quality and up-to-date as the source of evidence. In the
461	absence of a satisfactory systematic review, we did our own evidence synthesis using the
462	primary studies identified in AT9 and in the updated search. If the panel judged that the
463	identified randomized controlled trials (RCTs) were inadequate, we expanded the search to
464	include prospective cohort studies.
465	
466	

22

467 Study Selection, data abstraction, and data analysis

468

469	The criteria for selecting the evidence were based on the PICO elements of the standardized
470	questions and the study design (eTable 2). We followed standard processes (duplicate
471	independent work with agreement checking and disagreement resolution) for title and abstract
472	screening, full text screening, data abstraction, and risk of bias assessment. We abstracted data
473	on the characteristics of: study design, participants, intervention, control, outcomes, funding, and
474	COI. We assessed risk of bias using the Cochrane Risk of Bias Tool in randomized trials ⁴ , and an
475	adapted tool for observational studies ⁵ (eTable 3).
476	
477	When existing systematic reviews were not available or were inadequate, we performed meta-
478	analyses when appropriate. For each outcome of interest, we calculated the risk ratios of
479	individual studies then pooled them and assessed statistical heterogeneity using the I^2 statistic.
480	We used fixed-effects model when pooling data from two trials, or when one of the included
481	trials was large relative to the others. Otherwise, we used random-effects model. We used the
482	Review Manager software (Version 5.2) to perform the meta-analyses and construct forest plots.
483	We calculated absolute effects by applying pooled relative risks to baseline risks, ideally
484	estimated from valid prognostic observational data or, in the absence of the latter, from control
485	group risks. When credible data from prognostic observational studies were not available, we
486	used risk estimates from control groups of RCTs included in the meta-analyses (eFigure 5 and 6).
487	
488	

489 Assessing Quality of Evidence

490

491	Based on the GRADE approach, quality of evidence (also known as certainty of evidence) is
492	defined as the extent to which our confidence in the effect estimate is adequate to support a
493	recommendation. ^{6,7} The quality of evidence is categorized as high (A level), moderate (B level),
494	low (includes very-low) (C level). ^{6,7} The rating of the quality of evidence reflects the strengths
495	and limitations of the body of evidence and was based on the study design, risk of bias,
496	imprecision, inconsistency, indirectness of results, and likelihood of publication bias, in addition
497	to factors specific to observational studies. ^{5,6,8-12} Using GRADEpro software (Version 3.6), we
498	generated tables to summarize the judgments of the quality of the evidence, the relative and
499	absolute effect. ¹³ The GRADE tables include Summary of Findings (SoF) tables presented in the
500	main text, and a more detailed version called Evidence Profiles (EP) presented in the online
501	supplement. The evidence profiles also explicitly link recommendations to the supporting
502	evidence.

503

504

505 **Drafting of Recommendations**

506

Following the GRADE approach, the strength of a recommendation is defined as the extent to which we can be confident that the desirable effects of an intervention outweigh its undesirable effects. The strength of recommendation was categorized as strong (grade 1) or weak/conditional (grade 2). In determining the strength of the recommendation, the panel considered the balance of desirable and undesirable consequences (typically trade-off between recurrent VTE and

512	bleeding events), quality of evidence, resource implications, and patients' average values and
513	preferences for different outcomes and management options. ¹⁴⁻¹⁶
514	
515	
516	The chair drafted the recommendations after the entire panel had reviewed the evidence and
517	discussed the recommendation. Recommendations were then revised over a series of conference
518	calls and through email exchanges with the entire panel. A major aim was to ensure
519	recommendations were specific and unambiguous.
520	
521	
522	Methods for achieving consensus
523	
524	We used a modified Delphi technique ^{17,18} to achieve consensus on each recommendation. This
525	technique aims to minimize group interaction bias and to maintain anonymity among
526	respondents. Using an online survey (www.surveymonkey.com), panelists without a primary
527	COI voted their level of agreement with each recommendation (including quality of evidence
528	and strength of recommendation) based on a 5-point scale derived from the GRADE grid
529	(strongly agree, weakly agree, neutral, weakly disagree, strongly disagree). ¹⁹ Each panelist could
530	also provide open-ended feedback on each recommendation with suggested wording edits or
531	general remarks. To achieve consensus and be included in the final manuscript, each
532	recommendation had to have at least 80% agreement (strong or weak) with a response rate of at
533	least 75% of eligible panel members. All recommendations achieved consensus in the first

- round. We then used an iterative approach that involved review by, and approval from, all panel
- 535 members for the writing of this manuscript.
- 536
- 537
- 538 Peer Review
- 539
- 540 External reviewers who were not members of the expert panel reviewed the guideline before it
- 541 was published. These reviewers included content experts, a methodological expert, and a
- 542 practicing clinician. The final manuscript was reviewed and approved by the CHEST GOC, the
- 543 CHEST Board of Regents, and the CHEST journal.
- 544

545	Choice of Long-Term (First 3 Months) and Extended (No Scheduled Stop Date)
546	<u>Anticoagulant</u>
547	
548	
549	Summary of the Evidence
550	
551	Phases of anticoagulant therapy for VTE
552	
553	The need for anticoagulant therapy in patients with proximal DVT or PE is presented in AT9. ¹
554	The minimum duration of anticoagulant therapy for DVT or PE is usually three months and this
555	period of treatment is referred to as "long-term therapy". ¹ A decision to treat patients for longer
556	than 3 months, which we refer to as "extended anticoagulant therapy", usually implies that
557	anticoagulant therapy will be continued indefinitely. ¹
558	
559	1. In patients with proximal DVT or PE, we recommend long-term (3 months)
560	anticoagulant therapy over no such therapy (Grade 1B).
561	
562	
563	Choice of anticoagulant for acute and long-term (first 3 months) therapy
564	
565	AT9 recommendations on choice of anticoagulant therapy were based on comparisons of vitamin
566	K antagonist (VKA) with low-molecular weight heparin (LMWH) that were performed in the
567	preceding two decades ¹ , and with two of the NOACs (dabigatran ²⁰ , rivaroxaban ²¹) that had

568 recently been published. Although we judged that there was no convincing evidence that the 569 efficacy of LMWH compared to VKA differed between VTE patients without and with cancer there are, nevertheless, reasons to make different suggestions for the preferred anticoagulant in 570 patients without and with cancer.¹ We suggested VKA therapy over LMWH in patients without 571 cancer for the following reasons: injections are burdensome; LMWH is expensive; there are low 572 rates of recurrence with VKA in patients with VTE without cancer; and VKA may be as 573 effective as LMWH in patients without cancer. We suggested LMWH over VKA in patients with 574 cancer for the following reasons: there is moderate quality evidence that LMWH was more 575 effective than VKA in patients with cancer; there is a substantial rate of recurrent VTE in 576 patients with VTE and cancer who are treated with VKA; it is often harder to keep patients with 577 cancer who are on VKA in the therapeutic range; LMWH is reliable in patients who have 578 579 difficulty with oral therapy (e.g. vomiting); LMWH is easier to withhold or adjust than VKA if invasive interventions are required or thrombocytopenia develops. 580 581

One new randomized trial compared LMWH (tinzaparin) with warfarin for the first 6 months of treatment in 900 cancer patients with VTE.²² The findings of this study are consistent with evidence in AT9 that LMWH is more effective than VKA for long-term treatment of VTE, but that there is no difference in major bleeding or death (Table 1, eTable 4). Consequently we still suggest VKA over LMWH in patients without cancer, and LMWH over VKA in patients with cancer, and we have not changed our assessment of the quality of evidence for either of these recommendations (Table 1, eTable 4).

589

590	We suggested VKA therapy or LMWH over the NOACs in AT9 because only two randomized
591	trials had compared a NOAC (dabigatran ²⁰ , rivaroxaban ²¹) with VKA therapy, and none had
592	compared a NOAC with long-term LMWH. In addition, at that time there was little experience
593	using a NOAC for treatment of VTE and a scarcity of long-term follow-up data to support their
594	efficacy and safety. Since then, 4 new randomized trials have compared a NOAC (with ^{23,24} or
595	without ^{25,26} initial heparin therapy) with VKA therapy (with initial heparin therapy) for the acute
596	and long-term treatment of VTE. ²³⁻²⁶ The findings of these studies have been analyzed in a
597	number of systematic reviews ²⁷⁻³⁵ , including a network meta-analysis. ³⁵ In addition, there is now
598	extensive clinical experience using NOACs in patients with VTE and atrial fibrillation. For the
599	comparison of each of the NOACs with VKA in the initial and long-term treatment of VTE,
600	current evidence for efficacy is moderate or high quality, for safety (risk of bleeding) is moderate
601	or high quality, and overall is moderate or high quality (Tables 2-5, eTables 5-8).

602

In the 10th Edition of the Antithrombotic Guideline (AT10), the panel's overall assessment of the 603 relative efficacy and risk of bleeding with different anticoagulant agents is that: (1) the risk 604 reduction for recurrent VTE with all of the NOACs appears to be similar to the risk reduction 605 with VKA³⁵, including in patients with cancer³⁶⁻³⁹; (2) in patients with VTE and cancer, the risk 606 reduction for recurrent VTE appears to be greater with LMWH than with VKA therapy^{1,36,40}; (3) 607 the risk reduction for recurrent VTE with the NOACs compared to LMWH has not been assessed 608 but, based on indirect comparisons, LMWH may be more effective that the NOACs in patients 609 with VTE and cancer³⁶; (4) the risk reduction for recurrent VTE with different NOACs has not 610 been directly compared but, based on indirect comparisons, appears to be similar with all of the 611 NOACs³⁵; (5) the risk of bleeding with the NOACs, and particularly intracranial bleeding, is less 612

613	with the NOACs than with VKA therapy ^{27,33,35,41,42} ; (6) based on patients with atrial fibrillation,
614	gastrointestinal bleeding may be higher with dabigatran, rivaroxaban and edoxaban than with
615	VKA therapy, although this has not been seen in patients with VTE 27,28,33,41,43 ; (7) based on
616	indirect comparisons, the risk of bleeding may be lower with apixaban than with the other
617	NOACs ^{35,44} ; and (8) despite the lack of specific reversal agents for the NOACs, the risk that a
618	major bleed will be fatal appears to be no higher for the NOACs than for VKA therapy. ^{33,34,45}
619	Based on less bleeding with NOACs and greater convenience for patients and healthcare
620	providers, we now suggest that a NOAC is used in preference to VKA for the initial and long-
621	term treatment of VTE in patients without cancer. Factors that may influence which
622	anticoagulant is chosen for initial and long-term treatment of VTE are summarized in Table 6.
623	This decision is also expected to be sensitive to patient preferences. The order of our presentation
624	of the NOACS (dabigatran, rivaroxaban, apixaban, edoxaban) is based on the chronology of
625	publication of the phase 3 trials in VTE treatment and should not be interpreted as the guideline
626	panel's order of preference for the use of these agents.
627	
628	
629	2. In patients with DVT of the leg or PE and no cancer, as long-term (first 3 months)
630	anticoagulant therapy, we suggest dabigatran, rivaroxaban, apixaban or edoxaban
631	over VKA therapy (all Grade 2B). For patients with DVT of the leg or PE and no
632	cancer who are not treated with dabigatran, rivaroxaban, apixaban or edoxaban, we

633 **suggest VKA therapy over LMWH** (Grade 2C).

634	Remarks: Initial parenteral anticoagulation is given before dabigatran and edoxaban, is
635	not given before rivaroxaban and apixaban, and is overlapped with VKA therapy. See
636	text for factors that influence choice of therapy.
637	
638	
639	In patients with VTE and cancer ("cancer-associated thrombosis"), as noted earlier in this
640	section, we still suggest LMWH over VKA. In patients with VTE and cancer who are not treated
641	with LMWH, we do not have a preference for either a NOAC or VKA. In the absence of direct
642	comparisons between NOACs, and no convincing indirect evidence that one NOAC is superior
643	to another, we do not have a preference for one NOAC over another NOAC. Factors that may
644	influence which anticoagulant is chosen for initial and long-term treatment of VTE are
645	summarized in Table 6. This decision is also expected to be sensitive to patient preferences.
646	
647	
648	3. In patients with DVT of the leg or PE and cancer ("cancer-associated thrombosis"),
649	as long-term (first 3 months) anticoagulant therapy, we suggest LMWH over VKA
650	therapy (Grade 2C), dabigatran (Grade 2C), rivaroxaban (Grade 2C), apixaban
651	(Grade 2C) or edoxaban (Grade 2C).
652	Remarks: Initial parenteral anticoagulation is given before dabigatran and edoxaban, is
653	not given before rivaroxaban and apixaban, and is overlapped with VKA therapy. See
654	text for factors that influence choice of therapy.
655	
656	

657 *Choice of anticoagulant for extended therapy (after 3 months and no scheduled stop date)*

658

When AT9 was written, other than a comparison of low and standard intensity anticoagulant 659 therapy 46 , there were no comparisons of different types of extended therapy. Since AT9, 660 dabigatran has been compared with VKA therapy for extended treatment of VTE and found to be 661 similarly effective but associated with less bleeding (Table 7, eTable 9).⁴⁷ Extended treatment 662 with dabigatran⁴⁷, rivaroxaban²¹ and apixaban⁴⁸ markedly reduces recurrent VTE without being 663 associated with much bleeding (Tables 8-10, eTables 10-12).^{49,50} These studies provide moderate 664 quality evidence that dabigatran is as effective and as safe as VKA for extended treatment of 665 VTE (Table 7, eTable 9), and provide moderate quality evidence that each of the NOACs are 666 effective at preventing recurrent VTE without being associated with a high risk of bleeding 667 668 (Tables 8-10, eTables 10-12).

669

In AT9, we suggested that if a decision was made to use extended treatment of VTE the same 670 anticoagulant should be used as was used for the initial treatment period. Our intention then was 671 to indicate that there was no obligation to switch from one anticoagulant to a different one after 3 672 or 6 months of treatment (e.g. from LMWH to VKA in patients with VTE and cancer). We have 673 revised the wording of this recommendation to make it clearer that we neither encourage nor 674 discourage use of the same anticoagulant for initial and extended therapy. Although we 675 anticipate that the anticoagulant that was used for initial treatment will often also be used for the 676 extended therapy, if there are reasons to change the type of anticoagulant, this should be done. 677 We also note that whereas apixaban 5 mg twice-daily is used for long-term treatment, apixaban 678 2.5 mg twice-daily is used for extended therapy.⁴⁸ 679

680	
681	
682	
683	4. In patients with DVT of the leg or PE who receive extended therapy, we suggest that
684	there is no need to change the choice of anticoagulant after the first 3 months (Grade
685	2C).
686	Remarks: It may be appropriate for the choice of anticoagulant to change in response to
687	changes in the patient's circumstances or preferences during the long-term or extended
688	phases of treatment.
689	
690	
691	Duration of Anticoagulant Therapy
692	
693	
694	Summary of the Evidence
695	
696	AT9 recommendations on how long VTE should be treated were based on comparisons of 4
697	durations of treatment: (1) 4 or 6 weeks; (2) 3 months; (3) longer than 3 months but still a time-
698	limited course of therapy (usually 6 or 12 months); or (4) extended (also termed "indefinite"; no
699	scheduled stopping date) therapy. ¹ These four options were assessed in four subgroups of VTE
700	patients with different estimated risks of recurrence after stopping anticoagulant therapy: (1)
701	VTE provoked by surgery (a major transient risk factor; 3% recurrence at 5 years) ⁵¹ ; (2) VTE
702	provoked by a non-surgical transient risk factor (e.g. estrogen therapy, pregnancy, leg injury,
703	flight of >8 hours; 15% recurrence at 5 years) ⁵¹ ; (3) unprovoked (also termed "idiopathic") VTE;

704 not meeting criteria for provoked by a transient risk factor or by cancer (30% recurrence at 5 years)^{52,53}; and (4) VTE associated with cancer (also termed "cancer-associated thrombosis"; 705 15% annualized risk of recurrence; recurrence at 5 years not estimated because of high mortality 706 from cancer)^{54,55}. Recurrence risk was further stratified by estimating the risk of recurrence after: 707 (1) an isolated distal DVT was half that after a proximal DVT or PE^{56-58} ; and (2) a second 708 unprovoked proximal DVT or PE was 50% higher (1.5-fold) than after a first unprovoked 709 event^{58,59}. For the decision about whether to stop treatment at 3 months or to treat indefinitely 710 ("extended treatment"), we categorized a patient's risk of bleeding on anticoagulant therapy as 711 low (no bleeding risk factors; 0.8% annualized risk of major bleeding), moderate (one bleeding 712 risk factor; 1.6% annualized risk of major bleeding) or high (two or more bleeding risk factors; 713 \geq 6.5% annualized risk of major bleeding) (Table 11). A VKA targeted to an International 714 Normalized Ratio (INR) of about 2.5 was the anticoagulant in all studies that compared different 715 time-limited durations of therapy. We, therefore, assumed that VKA therapy was the 716 anticoagulant when we were making our AT9 recommendations, including for the comparison of 717 extended therapy with stopping treatment at 3 months. 718 719 720 Comparison of different time-limited durations of anticoagulation since AT9 721 722 Two additional studies have compared two time-limited durations of anticoagulant therapy. ^{60,61} 723 In patients with a first unprovoked PE who had completed 6 months of VKA therapy (target INR 724

2.5), the PADIS study randomized patients to another 18 months of treatment or to placebo, and

then followed both groups of patients for an additional 12 months after study drug was stopped

(Table 12, eTable 13).⁶¹ The study's findings were consistent with our recommendations in AT9;
the additional 18 months of VKA was very effective at preventing recurrent VTE but, once
anticoagulation was stopped, the risk of recurrent VTE was the same in those who had been
treated for 6 or for 24 months. This new information has not increased the quality of evidence for
comparison of a longer versus a shorter time-limited course of anticoagulation in patients
without cancer.

733

In patients with a first proximal DVT or PE and active cancer who had residual DVT on 734 ultrasound imaging after completing 6 months of LMWH therapy, the Cancer-DACUS study 735 randomized patients to another 6 months of LMWH or to stop therapy and followed patients for 736 12 months after they stopped LMWH.⁶⁰ The additional 6 months of LMWH reduced recurrent 737 VTE but, once anticoagulation was stopped, the risk of recurrent VTE was the same in those who 738 had been treated for 6 or for 12 months. In the same study, all patients without residual DVT 739 after 6 months of LMWH stopped therapy and had a low risk of recurrence during the next year 740 (3 episodes in 91 patients). This study's findings have not changed our recommendations for 741 treatment of VTE in patients with cancer. 742

743

744

745 *Evaluations of extended anticoagulant therapy since AT9*

746

When AT9 was written, extended treatment of VTE with VKA therapy had been evaluated in six
studies (mostly patients with unprovoked proximal DVT or PE^{46,62-65}, or a second episode of
VTE⁶⁶), and with a NOAC (rivaroxaban versus placebo) in one study of heterogeneous

750	patients ²¹ . Since AT9, no studies have compared extended VKA therapy with stopping
751	anticoagulants, although the large reduction in recurrent VTE with 18 additional months of VKA
752	therapy compared with placebo (i.e. before study drug was stopped) in the PADIS study ⁶¹
753	supports AT9 estimates for the efficacy of extended VKA therapy.
754	
755	Since AT9, two additional studies have compared extended NOAC therapy (dabigatran ⁴⁷ ,
756	apixaban ⁴⁸) with stopping treatment (i.e. placebo). These two studies, and the previous study that
757	evaluated extended treatment with rivaroxaban, found that extended therapy with these three
758	NOAC regimens reduced recurrent VTE by at least 80% and was associated with a modest risk
759	of bleeding (Tables 8-10, eTables 10-12). ⁴⁹ These three studies, however, enrolled heterogeneous
760	populations of patients (i.e. not confined to unprovoked VTE) and only followed patients for 6 to
761	12 months, which limits the implications of their findings in relationship to extended therapy.
762	

When considering the risks and benefits of extended anticoagulation in this update, the AT10 763 764 panel decided to use the same estimates for the reduction in recurrent VTE and the increase in bleeding with anticoagulation that we used in AT9, and that were based on VKA therapy. Our 765 reasoning was: (1) VKA is still widely used for extended treatment of VTE; (2) we felt that there 766 was not enough evidence of differences in efficacy and bleeding during extended therapy to 767 justify separate recommendations for NOACs, either as a group or as individual agents; and (3) 768 our recommendations about whether or not to use extended therapy were not sensitive to 769 770 assuming that there was a one-third reduction in bleeding with extended therapy compared to the estimated risk of bleeding with extended therapy that are shown in Table 11 and were used in 771 AT9 (e.g. with a NOAC compared to VKA)^{27,31,35,49} (the only recommendation to change would 772

36

- be a strong instead of a weak recommendation in favor of extended therapy in patients with asecond unprovoked VTE who had a moderate risk of bleeding).
- 775
- 776

777 Better selection of patients for extended VTE therapy

778

The most common and difficult decision about whether to stop anticoagulants after a time-779 limited course or to use extended therapy is in patients with a first unprovoked proximal DVT or 780 PE without a high risk of bleeding. In this subgroup of patients, patient sex and D-dimer level 781 measured about one month after stopping anticoagulant therapy can help to further stratify the 782 risk of recurrent VTE.⁶⁷⁻⁷⁰ Men have about a 75% higher (1.75-fold) risk of recurrence compared 783 to women, while patients with a positive D-dimer result have about double the risk of recurrence 784 compared to those with a negative D-dimer, and the predictive value of these two factors appears 785 to be additive. The risk of recurrence in women with a negative post treatment D-dimer appears 786 to be similar to the risk that we have estimated for patients with a proximal DVT or PE that was 787 provoked by a minor transient risk factor (~15% recurrence at 5 years); consequently, the 788 argument for extended anticoagulation in these women is not strong, suggesting that D-dimer 789 testing will often influence a woman's decision. The risk of recurrence in men with a negative D-790 dimer is not much less than the overall risk of recurrence that we have estimated for patients with 791 an unprovoked proximal DVT or PE (~25% compared to ~30% recurrence at 5 years); 792 consequently, the argument for extended anticoagulation in these men is still substantial, 793 suggesting that D-dimer testing will often not influence a male's decision. Because there is still 794 795 uncertainty about how to use D-dimer testing and a patient's sex to make decisions about

extended therapy in patients with a first unprovoked VTE, we have not made recommendationsbased on these factors.

798

799

800 *Revised recommendations*

801

These are unchanged from AT9 with the following minor exceptions. First, the recommendations 802 have been reformatted so that there is a separate statement for each comparison rather than 803 combining comparisons in a more complex statement. Second, a qualifying remark has been 804 added to the recommendation that suggests extended therapy over stopping treatment at 3 805 months in patients with a first unprovoked proximal DVT or PE and a low or moderate risk of 806 807 bleeding; this remark notes that patient sex and D-dimer level measured a month after stopping anticoagulant therapy may influence this treatment decision. If it becomes clear that, during the 808 extended phase of treatment, there are important differences in the risk of recurrence or bleeding 809 810 with the different anticoagulant agents, agent-specific recommendations for extended therapy may become justified. 811 812 813 5. In patients with a proximal DVT of the leg or PE provoked by surgery, we 814 815 recommend treatment with anticoagulation for 3 months over (i) treatment of a shorter period (Grade 1B), (ii) treatment of a longer time-limited period (e.g. 6, 12 or 816 24 months) (Grade 1B), or (iii) extended therapy (no scheduled stop date) (Grade 817

818

38

1B).

819 In patients with a proximal DVT of the leg or PE provoked by a nonsurgical 820 6. transient risk factor, we recommend treatment with anticoagulation for 3 months 821 over (i) treatment of a shorter period (Grade 1B), and (ii) treatment of a longer time-822 limited period (e.g. 6, 12 or 24 months) (Grade 1B). We suggest treatment with 823 anticoagulation for 3 months over extended therapy if there is a low or moderate 824 bleeding risk (Grade 2B), and recommend treatment for 3 months over extended 825 therapy if there is a high risk of bleeding (Grade 1B). 826 827 *Remarks*: In all patients who receive extended anticoagulant therapy, the continuing use of treatment should be reassessed at periodic intervals (e.g. annually). 828 829 830 In patients with an isolated distal DVT of the leg provoked by surgery or by a 7. 831 nonsurgical transient risk factor, we suggest treatment with anticoagulation for 3 832 months over treatment of a shorter period (Grade 2C), we recommend treatment 833 with anticoagulation for 3 months over treatment of a longer time-limited period 834 (e.g. 6, 12 or 24 months) (Grade 1B), and we recommend treatment with 835 anticoagulation for 3 months over extended therapy (no scheduled stop date) (Grade 836 1B). 837 Remarks: Duration of treatment of patients with isolated distal DVT refers to patients in 838 whom a decision has been made to treat with anticoagulant therapy; however, it is 839 anticipated that not all patients who are diagnosed with isolated distal DVT will be 840 841 prescribed anticoagulants.

842		
843		
844	8.	In patients with an unprovoked DVT of the leg (isolated distal or proximal) or PE,
845		we recommend treatment with anticoagulation for at least 3 months over treatment
846		of a shorter duration (Grade 1B), and we recommend treatment with anticoagulation
847		for 3 months over treatment of a longer time-limited period (e.g. 6, 12 or 24 months)
848		(Grade 1B).
849		Remarks: After 3 months of treatment, patients with unprovoked DVT of the leg or PE
850		should be evaluated for the risk-benefit ratio of extended therapy. Duration of treatment
851		of patients with isolated distal DVT refers to patients in whom a decision has been made
852		to treat with anticoagulant therapy; however, it is anticipated that not all patients who are
853		diagnosed with isolated distal DVT will be prescribed anticoagulants.
854		
855		
856	9.	In patients with a first VTE that is an unprovoked proximal DVT of the leg or PE
857		and who have a (i) low or moderate bleeding risk (see text), we suggest extended
858		anticoagulant therapy (no scheduled stop date) over 3 months of therapy (Grade 2B),
859		and a (ii) high bleeding risk (see text), we recommend 3 months of anticoagulant
860		therapy over extended therapy (no scheduled stop date) (Grade 1B).
861		Remarks: Patient sex and D-dimer level measured a month after stopping anticoagulant
862		therapy may influence the decision to stop or extend anticoagulant therapy (see text). In
863		all patients who receive extended anticoagulant therapy, the continuing use of treatment
864		should be reassessed at periodic intervals (e.g. annually).

865		
866		
867	10.	In patients with a second unprovoked VTE and who have a (i) low bleeding risk (see
868		text), we recommend extended anticoagulant therapy (no scheduled stop date) over
869		3 months (Grade 1B), (ii) moderate bleeding risk (see text), we suggest extended
870		anticoagulant therapy over 3 months of therapy (Grade 2B), and (iii) high bleeding
871		risk (see text), we suggest 3 months of anticoagulant therapy over extended therapy
872		(no scheduled stop date) (Grade 2B).
873		Remarks: In all patients who receive extended anticoagulant therapy, the continuing use
874		of treatment should be reassessed at periodic intervals (e.g. annually).
875		
876		
877	11.	In patients with DVT of the leg or PE and active cancer ("cancer-associated
878		thrombosis") and who (i) do not have a high bleeding risk, we recommend extended
879		anticoagulant therapy (no scheduled stop date) over 3 months of therapy (Grade 1B),
879 880		anticoagulant therapy (no scheduled stop date) over 3 months of therapy (Grade 1B), and (ii) have a high bleeding risk, we suggest extended anticoagulant therapy (no
880		and (ii) have a high bleeding risk, we suggest extended anticoagulant therapy (no
880 881		and (ii) have a high bleeding risk, we suggest extended anticoagulant therapy (no scheduled stop date) over 3 months of therapy (Grade 2B).
880 881 882		and (ii) have a high bleeding risk, we suggest extended anticoagulant therapy (no scheduled stop date) over 3 months of therapy (Grade 2B). <i>Remarks</i> : In all patients who receive extended anticoagulant therapy, the continuing use
880 881 882 883		and (ii) have a high bleeding risk, we suggest extended anticoagulant therapy (no scheduled stop date) over 3 months of therapy (Grade 2B). <i>Remarks</i> : In all patients who receive extended anticoagulant therapy, the continuing use
880 881 882 883 884		and (ii) have a high bleeding risk, we suggest extended anticoagulant therapy (no scheduled stop date) over 3 months of therapy (Grade 2B). <i>Remarks</i> : In all patients who receive extended anticoagulant therapy, the continuing use
880 881 882 883 884 885		and (ii) have a high bleeding risk, we suggest extended anticoagulant therapy (no scheduled stop date) over 3 months of therapy (Grade 2B). <i>Remarks</i> : In all patients who receive extended anticoagulant therapy, the continuing use

888 Aspirin for Extended Treatment of Venous Thromboembolism

- 889
- 890

891 Summary of the Evidence

892

AT9 did not address if there was a role for aspirin, or antiplatelet therapy generally, in the 893 treatment of VTE. Since then, two randomized trials have compared aspirin to placebo for the 894 prevention of recurrent VTE in patients with a first unprovoked proximal DVT or PE who have 895 completed a 3 to 18 month of anticoagulant therapy.⁷¹⁻⁷³ These trials provide moderate quality 896 evidence that extended aspirin therapy reduces recurrent VTE by about one-third. In these trials, 897 the benefits of aspirin outweighed the increase in bleeding, which was not statistically significant 898 899 (Table 13, eTable14). The two trials enrolled patients with a first unprovoked VTE who did not have an increased risk of bleeding; patients for whom these guidelines have suggested extended 900 anticoagulant therapy. Extended anticoagulant therapy is expected to reduce recurrent VTE by 901 over 80% and extended NOAC therapy may be associated with the same risk of bleeding as 902 aspirin.^{49,50} If patients with a first unprovoked VTE decline extended anticoagulant therapy 903 because they have risk factors for bleeding or because they have a lower than average risk of 904 recurrence, the net benefit of aspirin therapy is expected to be less than in the two trials that 905 evaluated aspirin for extended treatment of VTE. 906

907

Based on indirect comparisons, we expect the net benefit of extended anticoagulant therapy in
patients with unprovoked VTE to be substantially greater than the benefits of extended aspirin
therapy.⁴⁹ Consequently, we do not consider aspirin a reasonable alternative to anticoagulant

911	therapy in patients who want extended therapy. However, if a patient has decided to stop				
912	anticoagulants, prevention of recurrent VTE is one of the benefits of aspirin (may also include				
913	reductions in arterial thrombosis and colon cancer) that needs to be balanced against aspirin's				
914	risk of bleeding and inconvenience. Use of aspirin should also be reevaluated when patients with				
915	VTE stop anticoagulant therapy because aspirin may have been stopped when anticoagulants				
916	were started (Table 13, eTable 14).				
917					
918					
919	12. In patients with an unprovoked proximal DVT or PE who are stopping				
920	anticoagulant therapy and do not have a contraindication to aspirin, we suggest				
921	aspirin over no aspirin to prevent recurrent VTE (Grade 2C).				
922	Remarks: Because aspirin is expected to be much less effective at preventing recurrent				
923	VTE than anticoagulants, we do not consider aspirin a reasonable alternative to				
924	anticoagulant therapy in patients who want extended therapy. However, if a patient has				
925	decided to stop anticoagulants, prevention of recurrent VTE is one of the benefits of				
926	aspirin that needs to be balanced against aspirin's risk of bleeding and inconvenience. Use				
927	of aspirin should also be reevaluated when patients stop anticoagulant therapy because				
928	aspirin may have been stopped when anticoagulants were started.				
929					
930					
931					

932	Whether and How to Prescribe Anticoagulants to Patients with Isolated Distal Deep Vein
933	Thrombosis
934	
935	
936	Summary of the Evidence
937	
938	AT9 discouraged routine whole-leg ultrasound examinations (i.e. including the distal veins) in
939	patients with suspected DVT; thereby reducing how often isolated distal DVT is diagnosed. ^{1,74}
940	The rationale for not routinely examining the distal veins in patients who have had proximal
941	DVT excluded is that: (1) other assessment may already indicate that isolated distal DVT is
942	either unlikely to be present or unlikely to cause complications if it is present (e.g. low clinical
943	probability of DVT; D-dimer is negative); (2) if these conditions are not met, a repeat ultrasound
944	examination of the proximal veins can be done after a week to detect possible DVT extension
945	and the need for treatment; and (3) false-positive findings for DVT occur more often with
946	ultrasound examinations of the distal compared to the proximal veins. ^{1,74,75}
947	
948	If the calf veins are imaged (usually with ultrasound) and isolated distal DVT is diagnosed, there
949	are two management options: 1) treat patients with anticoagulant therapy; or 2) do not treat
950	patients with anticoagulant therapy unless extension of their DVT is detected on a follow-up
951	ultrasound examination (e.g. after one and two weeks, or sooner if there is concern; there is no
952	widely accepted protocol for surveillance ultrasound (US) testing) ⁷⁶ . As about 15% of untreated
953	isolated distal DVT are expected to subsequently extend into the popliteal vein and may cause

pulmonary embolism, it is not acceptable to neither anticoagulate nor do surveillance to detect
thrombus extension.^{1,77-80}

956

In AT9, we judged that there was high quality evidence that anticoagulant therapy was effective 957 for the treatment of proximal DVT and PE, but uncertainty that the benefits of anticoagulation 958 outweigh its risks in patients with isolated distal DVT because of their lower risk of progressive 959 or recurrent VTE. We suggest the following as risk factors for extension of distal DVT that 960 would favor anticoagulation over surveillance: (1) D-dimer is positive (particularly when 961 markedly so without an alternative reason); (2) thrombosis is extensive (e.g. >5 cm in length, 962 involves multiple veins, >7 mm in maximum diameter); (3) thrombosis is close to the proximal 963 veins; (4) there is no reversible provoking factor for DVT;(5) active cancer;(6) history of VTE; 964 (7) inpatient status.^{1,76-78,81-85} We consider thrombosis that is confined to the muscular veins of 965 the calf (i.e., soleus, gastrocnemius) to have a lower risk of extension than thrombosis that 966 involves the axial (i.e. true deep; peroneal, tibial) veins. ^{77,82,86} Severe symptoms favour 967 968 anticoagulation, a high risk for bleeding (Table 11) favors surveillance, and the decision to use anticoagulation or surveillance is expected to be sensitive to patient preferences. We anticipate 969 that isolated distal DVT that are detected using a selective approach to whole-leg US will often 970 satisfy criteria for initial anticoagulation whereas distal DVT detected by routine whole-leg 971 ultrasound often will not. 972

973

974 The updated literature search did not identify any new randomized trials that assessed
975 management of patients with isolated distal DVT. Two new systematic reviews^{77,78} and a
976 narrative review⁸⁴ addressed treatment of isolated distal DVT. In addition to summarizing

977	availa	ble data, consistent with AT9, they emphasize the limitations of available evidence. In the				
978	absence of substantive new evidence, the panel endorsed the AT9 recommendations without					
979	revisi	revision. The evidence supporting these recommendations remains low quality because it is not				
980	based on direct comparisons of the two management strategies, and ability to predict extension					
981	of dis	tal DVT is limited.				
982						
983						
984	13.	In patients with acute isolated distal DVT of the leg and (i) without severe symptoms				
985		or risk factors for extension (see text), we suggest serial imaging of the deep veins				
986		for 2 weeks over anticoagulation (Grade 2C), and (ii) with severe symptoms or risk				
987		factors for extension (see text), we suggest anticoagulation over serial imaging of the				
988		deep veins (Grade 2C).				
989		<i>Remarks</i> : Patients at high risk for bleeding are more likely to benefit from serial imaging.				
990		Patients who place a high value on avoiding the inconvenience of repeat imaging and a				
991		low value on the inconvenience of treatment and on the potential for bleeding are likely				
992		to choose initial anticoagulation over serial imaging				
993						
994						
995	14.	In patients with acute isolated distal DVT of the leg who are managed with				
996		anticoagulation, we recommend using the same anticoagulation as for patients with				
997		acute proximal DVT (Grade 1B).				
998						

999 15. In patients with acute isolated distal DVT of the leg who are managed with serial

- 1000 imaging, we (i) recommend no anticoagulation if the thrombus does not extend
- 1001 (Grade 1B), (ii) suggest anticoagulation if the thrombus extends but remains
- 1002 confined to the distal veins (Grade 2C), and (iii) recommend anticoagulation if the
- 1003 thrombus extends into the proximal veins (Grade 1B).
- 1004
- 1005
- 1006

1007 <u>Catheter-Directed Thrombolysis for Acute Deep Vein Thrombosis of the Leg</u> 1008

1000

1009

1010 Summary of the Evidence

1011

At the time of AT9 there was one small randomized trial⁸⁷ comparing the effect of catheter-1012 directed thrombolysis (CDT) versus anticoagulant alone on development of the post-thrombotic 1013 syndrome (PTS), and another larger randomized trial (CAVENT Study) assessing short term 1014 (e.g. venous patency and bleeding) but not long term (e.g. PTS) outcomes.^{88,89} The CAVENT 1015 1016 Study has since reported that CDT reduced PTS, did not alter quality of life, and appears to be cost effective (Table 14, eTable 15).⁹⁰⁻⁹³ A retrospective analysis found that CDT (3649 patients) 1017 1018 was associated with an increase in transfusion (2-fold), intracranial bleeding (3-fold), pulmonary 1019 embolism (1.5-fold) and vena caval filter insertion (2-fold); long term outcomes and PTS were not reported. ⁹⁴ A single center prospective registry found that ultrasound-assisted CDT in acute 1020 1021 iliofemoral (87 patients) achieved high rates of venous patency, was rarely associated with bleeding, and that only 6% of patients had PTS at one year.⁹⁵ 1022 This new evidence has not led to a change in our recommendation for the use of CDT in patients 1023 with DVT. Although the quality of the evidence has improved, the overall quality is still low 1024 because of very serious imprecision. Unchanged from AT9, we propose that the patients who are 1025 most likely to benefit from CDT have iliofemoral DVT, symptoms for <14 days, good functional 1026 1027 status, life expectancy of ≥ 1 year, and a low risk of bleeding (Table 14, Table 15, eTable 15). As the balance of risks and benefits with CDT is uncertain, we consider that anticoagulant therapy 1028

1029	alone is an acceptable alternative to CDT in all patients with acute DVT who do not have
1030	impending venous gangrene.

- 1031
- 1032

1033 16. In patients with acute proximal DVT of the leg, we suggest anticoagulant therapy

1034 alone over catheter-directed thrombolysis (CDT) (Grade 2C).

- 1035 *Remarks*: Patients who are most likely to benefit from CDT (see text), who attach a high
- 1036 value to prevention of post thrombotic syndrome (PTS), and a lower value to the initial
- 1037 complexity, cost, and risk of bleeding with CDT, are likely to choose CDT over
- 1038 anticoagulation alone.
- 1039
- 1040
- 1041

1042 Role of Inferior Vena Caval Filter in Addition to Anticoagulation for Acute Deep Vein 1043 Thrombosis or Pulmonary Embolism

1044

1045

1046 Summary of the Evidence

1047

Our recommendation in AT9 was primarily based on findings of the PREPIC randomized 1048 trial^{96,97} which showed that placement of a permanent inferior vena caval (IVC) filter increased 1049 DVT, decreased PE, and did not influence VTE (DVT and PE combined) or mortality (Table 16, 1050 eTable 16). Since then, a number of registries have suggested that IVC filters can reduce early 1051 mortality in patients with acute VTE, although this evidence has been questioned.⁹⁸⁻¹⁰² The 1052 recently published PREPIC 2 randomized trial found that placement of an IVC filter for 3 1053 months did not reduce recurrent PE, including fatal PE, in anticoagulated patients with PE and 1054 DVT who had additional risk factors for recurrent VTE (Table 16, eTable 16).¹⁰³ This new 1055 1056 evidence is consistent with our recommendations in AT9. However, because it is uncertain if there is benefit to placement of an IVC filter in anticoagulated patients with severe PE (e.g. with 1057 hypotension), and this is done by some experts, our recommendation against insertion of an IVC 1058 filter in patients with acute PE who are anticoagulated may not apply to this select subgroup of 1059 patients. 1060

1061

Although the PREPIC 2 study has improved the quality of evidence for this recommendation,
overall quality is still moderate because of imprecision (Table 16, eTable 16). The AT10 panel
decided against combining the results of the PREPIC and PREPIC 2 studies because of

1065	differences in the type of filter used, the duration of filter placement, and differences in the		
1066	length	of follow-up.	
1067			
1068			
1069	17.	In patients with acute DVT or PE who are treated with anticoagulants, we	
1070		recommend against the use of an IVC filter (Grade 1B).	
1071			
1072			
1073			

1074	Compression	Stocking to	Prevent Post	Thrombotic	Syndrome
1014	Compression		I I C V CHIL I OBL	1 m omoute	o y mui o mic

- 1075
- 1076
- 1077 Summary of the Evidence
- 1078

AT9 suggested routine use of graduated compression stockings for two years after DVT to 1079 1080 reduce the risk of PTS. That recommendation was mainly based on findings of two small singlecenter randomized trials in which patients and study personnel were not blinded to stocking use 1081 (no placebo stocking).¹⁰⁴⁻¹⁰⁶ The quality of the evidence was moderate because of risk of bias due 1082 to lack of blinding of an outcome (PTS) that has a large subjective component, and because of 1083 serious imprecision of the combined findings of the two trials (Table 17, eTable 17). Since AT9, 1084 1085 a much larger multicenter, placebo-controlled trial at low risk of bias found that routine use of graduated compression stockings did not reduce PTS or have other important benefits.¹⁰⁷ Based 1086 on this trial, we now suggest that graduated compression stockings not be used routinely to 1087 1088 prevent PTS and consider the quality to the evidence to be moderate (Table 17, eTable 17). 1089 The same study found that routine use of graduated compression stockings did not reduce leg 1090 pain during the 3 months after DVT diagnosis (Table 17, eTable 2 and 17).¹⁰⁸ This finding. 1091 however, does not mean that graduated compression stockings will not reduce acute symptoms 1092 of DVT, or chronic symptoms in those who have developed PTS. 1093 1094

1096 18. In patients with acute DVT of the leg, we suggest not using compression stockings

- 1097 **routinely to prevent PTS** (Grade 2B).
- 1098 *Remarks*: This recommendation focuses on prevention of the chronic complication of
- 1099 PTS and not on the treatment of symptoms. For patients with acute or chronic symptoms,
- 1100 a trial of graduated compression stockings is often justified.
- 1101
- 1102
- 1103

1104 Whether to Treat Subsegmental Pulmonary Emb
--

- 1105
- 1106
- 1107 Summary of the Evidence
- 1108

Subsegmental PE refers to PE that is confined to the subsegmental pulmonary arteries. Whether 1109 these patients should be treated, a question that was not addressed in AT9, has grown in 1110 importance because improvements in computerized tomography (CT) pulmonary angiography 1111 have increased how often subsegmental PE is diagnosed (i.e. from ~5% to over 10% of PE).¹⁰⁹⁻ 1112 ¹¹² There is uncertainty whether these patients should be anticoagulated for two reasons. First, 1113 because the abnormalities are small, a diagnosis of subsegmental PE is more likely to be a false-1114 positive finding than a diagnosis of PE in the segmental or more proximal pulmonary 1115 arteries.^{111,113-117} Second, because a true subsegmental PE is likely to have arisen from a small 1116 DVT, the risk of progressive or recurrent VTE without anticoagulation is expected to be lower 1117 than in patients with a larger PE.^{111,112,118,119} 1118 1119

Our literature search did not identify any randomized trials in patients with subsegmental PE. There is, however, high quality evidence for the efficacy and safety of anticoagulant therapy in patients with larger PE, and this is expected to apply similarly to patients with subsegmental PE.¹ Whether the risk of progressive or recurrent VTE is high enough to justify anticoagulation in patients with subsegmental PE is uncertain.^{111,112,118} There were no episodes of recurrent VTE in retrospective reports that included a total of about 60 patients with subsegmental PE and no proximal DVT who were not anticoagulated.^{111,112} However, in another retrospective analysis,

patients with subsegmental PE appeared to have a similar risk of recurrent VTE during 3 months
of anticoagulant therapy as patients with larger PE, and a higher risk than in patients who were
suspected of having PE but had PE excluded.¹²⁰

1130

1131 The AT10 panel endorsed that, if no anticoagulant therapy is an option, patients with

subsegmental PE should have bilateral ultrasound examinations to exclude proximal DVT of the 1132 legs.^{111,115} DVT should also be excluded in other high-risk locations, such as in upper extremities 1133 with central venous catheters. If DVT is detected, patients require anticoagulation. If DVT is 1134 1135 not detected, there is uncertainty whether patients should be anticoagulated. If a decision is made not to anticoagulate, there is the option of doing one or more follow-up ultrasound examinations 1136 of the legs to detect (and then treat) evolving proximal DVT.^{111,115} Serial testing for proximal 1137 DVT has been shown to be a safe management strategy in patients with suspected PE who have 1138 non-diagnostic ventilation-perfusion scans, many of whom are expected to have subsegmental 1139 PE.^{111,112,121} 1140

1141

We suggest that a diagnosis of subsegmental PE is more likely to be correct (i.e. a true-positive) 1142 if: (1) the CT pulmonary angiogram (CTPA) is of high quality with good opacification of the 1143 distal pulmonary arteries; (2) there are multiple intraluminal defects; (3) defects involve more 1144 proximal sub-segmental arteries (i.e. are larger); (4) defects are seen on more than one image; (5) 1145 defects are surrounded by contrast rather than appearing to be adherent to the pulmonary artery 1146 1147 walls; (6) defects are seen on more than one projection; (7) patients are symptomatic, as opposed to PE being an incidental finding; (8) there is a high clinical pre-test probability for PE; and (9) 1148 1149 D-Dimer level is elevated, particularly if the increase is marked and otherwise unexplained.

1151	In add	dition to whether or not patients truly have subsegmental PE, we consider the following to
1152	be ris	k factors for recurrent or progressive VTE if patients are not anticoagulated patients who:
1153	are ho	ospitalized or have reduced mobility for another reason; have active cancer (particularly if
1154	metas	static or being treated with chemotherapy); or have no reversible risk factor for VTE such as
1155	recen	t surgery. Furthermore, a low cardiopulmonary reserve or marked symptoms that cannot be
1156	attrib	uted to another condition favour anticoagulant therapy, while a high risk of bleeding favors
1157	no an	ticoagulant therapy. The decision to anticoagulate or not is also expected to be sensitive to
1158	patier	nt preferences. Patients who are not anticoagulated should be told to return for re-evaluation
1159	if syn	nptoms persist or worsen.
1160		
1161	The e	vidence supporting our recommendations is low quality because of indirectness and
1162	becau	se there is limited ability to predict which patients will have VTE complications without
1163	antico	pagulation.
1164		
1165		
1166	19.	In patients with subsegmental PE (no involvement of more proximal pulmonary
1167		arteries) and no proximal DVT in the legs who have a (i) low risk for recurrent VTE
1168		(see text), we suggest clinical surveillance over anticoagulation (Grade 2C), and (ii)
1169		high risk for recurrent VTE (see text), we suggest anticoagulation over clinical
1170		surveillance (Grade 2C).
1171		Remarks: Ultrasound imaging of the deep veins of both legs should be done to exclude
1172		proximal DVT. Clinical surveillance can be supplemented by serial ultrasound imaging

- of the proximal deep veins of both legs to detect evolving DVT (see text). Patients and
- 1174 physicians are more likely to opt for clinical surveillance over anticoagulation if there is
- 1175 good cardiopulmonary reserve or a high risk of bleeding.
- 1176

1177 Treatment of Acute Pulmonary Embolism Out of Hospital

- 1178
- 1179

1180 Summary of the Evidence

1181

Our recommendation in AT9 was based on: (1) two trials that randomized patients with acute PE 1182 to receive LMWH for only three days in hospital¹²² or entirely at home¹²³ compared with being 1183 treated with LMWH in hospital for a longer period; (2) 15 observational studies, nine of which 1184 were prospective, that evaluated treatment of acute PE out of hospital¹; and (3) longstanding 1185 experience treating DVT without admission to hospital. Since AT9, no further randomized trials 1186 have evaluated out of hospital treatment of acute PE. A number of additional prospective and 1187 1188 retrospective observational studies have reported findings consistent with earlier reports, and the findings of all of these studies have been included in recent meta-analyses that have addressed 1189 treatment of acute PE out of hospital.¹²⁴⁻¹²⁶ 1190 1191 Studies that evaluated NOACs for the acute treatment of PE did not report the proportion of 1192 patients who were treated entirely out of hospital, but it is probable that this was uncommon. 1193 Treatment of acute PE with a NOAC that does not require initial heparin therapy (e.g. 1194 rivaroxaban, apixaban) facilitates treatment without hospital admission. Consistent with AT9, we 1195 suggest that patients who satisfy all of the following criteria are suitable for treatment of acute 1196

- 1197 PE out of hospital: (1) clinically stable with good cardiopulmonary reserve; (2) no
- 1198 contraindications such as recent bleeding, severe renal or liver disease, or severe
- thrombocytopenia (i.e. $< 70,000 / \text{mm})^3$; (3) expected to be compliant with treatment; (4) the

1200	patient feels well enough to be treated at home. Clinical decision rules such as the Pulmonary
1201	Embolism Severity Index (PESI), either the original form with score <85 or the simplified form
1202	with score of 0, can help to identify low risk patients who are suitable for treatment at home. ¹²⁷⁻
1203	¹³² However, we consider clinical prediction rules as aids to decision making and do not require
1204	patients to have a predefined score (e.g. low risk PESI score) in order to be considered for
1205	treatment at home. Similarly, although we don't suggest the need for routine assessment in
1206	patients with acute PE, we agree that the presence of right ventricular dysfunction or increased
1207	cardiac biomarker levels should discourage treatment out of hospital. ^{131,133-139} The quality of the
1208	evidence for treatment of acute PE at home remains moderate due to marked imprecision. The
1209	updated recommendation has been modified to state that appropriately selected patients may be
1210	treated entirely at home, rather than just be discharged early.
1211	
1212	
1213	20. In patients with low-risk PE and whose home circumstances are adequate, we
1214	suggest treatment at home or early discharge over standard discharge (e.g. after
1215	first 5 days of treatment) (Grade 2B).

1219	Suctomia	Thrombolytic	Thoropy for	Dulmonom	Emboliam
1219	Systemic		I HERADY TOP	Punnonarv	EIIIDOHSIII

- 1220
- 1221

1222 Summary of the Evidence

1223

1224 It is long established that systemic thrombolytic therapy accelerates resolution of PE as

1225 evidenced by more rapid lowering of pulmonary artery pressure, increases in arterial

1226 oxygenation, and resolution of perfusion scan defects, and that this therapy increases bleeding.¹

1227 The net mortality benefit of thrombolytic therapy in patients with acute PE, however, has been

1228 uncertain and depends on an individual patient's baseline (i.e. without thrombolytic therapy) risk

1229 of dying from the acute PE and their risk of bleeding. Patients with the highest risk of dying

1230 from PE and the lowest risk of bleeding obtain the greatest net benefit from thrombolytic

therapy. Patients with the lowest risk of dying from PE and the highest risk of bleeding obtain

1232 the least net benefit from thrombolytic therapy and are likely to be harmed.

1233

1234

1235 Evidence for the use of thrombolytic therapy in patients with acute PE

1236

AT9 recommendations for the use of thrombolytic therapy in acute PE were based on low quality evidence.^{1,140} At that time, only about 800 patients with acute PE had been randomized to receive thrombolytic therapy or anticoagulant therapy alone and, consequently, estimates of efficacy, safety and overall mortality were very imprecise. In addition, the trials that enrolled these 800 patients had a high risk of bias, and there was a strong suspicion that there was selective

reporting of studies that favored thrombolytic therapy (i.e. publication bias). Randomized trials

1243	have clearly established that thrombolytic therapy increases bleeding in patients with acute
1244	myocardial infarction ¹⁴¹ , but that evidence was indirect when applied to patients with PE.
1245	
1246	Since AT9, two additional small, randomized trials ^{142,143} and a much larger trial ¹⁴⁴ have
1247	evaluated systemic thrombolytic therapy in about 1,200 patients with acute PE. The findings of
1248	these new studies have been combined with those of earlier studies in a number of meta-
1249	analyses. ¹⁴⁵⁻¹⁴⁹ These new data, by reducing imprecision for estimates of efficacy and safety and
1250	the overall risk of bias, have increased the quality of the evidence from low to moderate for
1251	recommendations about the use of systemic thrombolytic therapy in acute PE (Table 18, eTable
1252	18).
1253	
1254	Most of the new evidence comes from the PIETHO trial, which randomized 1006 patients with
1255	PE and right ventricular dysfunction to tenecteplase and heparin or to heparin therapy alone
1256	(with placebo). ¹⁴⁴ The most notable findings of this study were that thrombolytic therapy
1257	prevented cardiovascular collapse but increased major (including intracranial) bleeding; these
1258	benefits and harms were finely balanced, with no convincing net benefit from thrombolytic
1259	therapy. An additional finding was that "rescue thrombolytic therapy" appeared to be of benefit
1260	in patients who developed cardiovascular collapse after initially being treated with anticoagulant
1261	therapy alone.
1262	
1263	

1264 Management implication of the updated evidence

1265	
1266	The improved quality of evidence has not resulted in substantial changes to our
1267	recommendations because: (1) the new data supports that the benefits of systemic thrombolytic
1268	therapy in patients without hypotension, including those with right ventricular dysfunction or an
1269	increase in cardiac biomarkers ("intermediate-risk PE"), are largely offset by the increase in
1270	bleeding; and (2) among patients without hypotension, it is still not possible to confidently
1271	identify those who will derive net benefit from this therapy.
1272	
1273	
1274	PE with hypotension
1275	
1276	Consistent with AT9, we suggest that patients with acute PE with hypotension (i.e. systolic
1277	pressure less than 90 mmHg for 15 minutes) and without high bleeding risk (Table 15) are
1278	treated with thrombolytic therapy. The more severe and persistent the hypotension, and the more
1279	marked the associated features of shock and myocardial dysfunction or damage, the more
1280	compelling the indication for systemic thrombolytic therapy. Conversely, if hypotension is
1281	transient or less marked, not associated with features of shock or myocardial dysfunction, and if
1282	there are risk factors for bleeding, physicians and patients are likely to initially choose
1283	anticoagulant therapy without thrombolytic therapy. If thrombolytic therapy is not used and
1284	hypotension persists or becomes more marked, or clinical features of shock or myocardial
1285	damage develop or worsen, thrombolytic therapy may then be used.
1286	

1288 *PE without hypotension*

1289

Consistent with AT9, we recommend that most patients with acute PE who do not have 1290 1291 hypotension are not treated with thrombolytic therapy. However, patients with PE without hypotension include a broad spectrum of presentations. At the mild end of the spectrum are 1292 1293 those who have minimal symptoms and minimal cardiopulmonary impairment. As noted in the 1294 section "Setting for initial anticoagulation for PE", many of these patients can be treated entirely at home or can be discharged after a brief admission. At the severe end of the spectrum are those 1295 1296 with severe symptoms and more marked cardiopulmonary impairment (even though systolic blood pressure is above 90 mmHg). In addition to clinical features of cardiopulmonary 1297 impairment (e.g. heart rate, blood pressure, respiratory rate, jugular venous pressure, tissue 1298 1299 hypoperfusion, pulse oximetry), they may have evidence of right ventricular dysfunction on their CTPA or on echocardiography, or evidence of myocardial damage as reflected by increases in 1300 cardiac biomarkers (e.g. troponins or brain natriuretic peptide). 1301 1302 We suggest that patients without hypotension who are at the severe end of the spectrum are 1303 treated with aggressive anticoagulation and other supportive measures, and not with thrombolytic 1304

therapy. These patients need to be closely monitored to ensure that deteriorations are detected.

1306 Development of hypotension suggests that thrombolytic therapy has become indicated.

1307 Deterioration that has not resulted in hypotension may also prompt the use of thrombolytic

therapy. For example, there may be a progressive increase in heart rate, a decrease in systolic

1309 blood pressure (which remains above 90 mmHg), an increase in jugular venous pressure,

1310 worsening gas exchange, signs of shock (e.g. cold sweaty skin, reduced urine output, confusion),

1311	progre	essive right heart dysfunction on echocardiography, or an increase in cardiac biomarkers.
1312	We do	o not propose that echocardiography or cardiac biomarkers are measured routinely in all
1313	patien	ts with PE, or in all patients with a non-low risk PESI assessment ^{123,128,150} . This is
1314	becaus	se, when measured routinely, the results of these assessments do not have clear therapeutic
1315	implic	ations. For example, we do not recommend thrombolytic therapy routinely for patients
1316	withou	at hypotension who have right ventricular dysfunction and an increase in cardiac
1317	bioma	rkers. However, we encourage assessment of right ventricular function by
1318	echoca	ardiography and/or measurement of cardiac biomarkers if, following clinical assessment,
1319	there i	s uncertainty about whether patients require more intensive monitoring or should receive
1320	throm	bolytic therapy.
1321		
1322		
1323	21.	In patients with acute PE associated with hypotension (e.g. systolic BP <90 mm Hg)
1324		who do not have a high bleeding risk, we suggest systemically administered
1325		thrombolytic therapy over no such therapy (Grade 2B).
1326		
1327	22.	In most patients with acute PE not associated with hypotension, we recommend
1328		against systemically administered thrombolytic therapy (Grade 1B).
1329		
1330	23.	In selected patients with acute PE who deteriorate after starting anticoagulant
1331		therapy but have yet to develop hypotension and who have a low bleeding risk, we
1332		suggest systemically administered thrombolytic therapy over no such therapy
1333		(Grade 2C).

- 1334 *Remarks*: Patients with PE and without hypotension who have severe symptoms or
- 1335 marked cardiopulmonary impairment should be monitored closely for deterioration.
- 1336 Development of hypotension suggests that thrombolytic therapy has become indicated.
- 1337 Cardiopulmonary deterioration (e.g. symptoms, vital signs, tissue perfusion, gas
- exchange, cardiac biomarkers) that has not progressed to hypotension may also alter the
- risk-benefit assessment in favor of thrombolytic therapy in patients initially treated with
- anticoagulation alone.
- 1341
- 1342
- 1343

1344	Catheter-Based Thrombus Removal for the Initial Treatment of Pulmonary Embolism
1345	
1346	
1347	Summary of the Evidence
1348	
1349	Interventional catheter-based treatments for acute PE include delivery of catheter directed
1350	thrombolysis (CDT) if there is not a high risk of bleeding, or catheter-based treatment without
1351	thrombolytic therapy if there is a high risk of bleeding.
1352	
1353	
1354	Catheter directed thrombolysis
1355	
1356	The most important limitation of systemic thrombolytic therapy is that it increases bleeding,
1357	including intracranial bleeding. CDT, because it uses a lower dose of thrombolytic drug (e.g.
1358	about one-third), is expected to cause less bleeding at remote sites (e.g. intracranial or
1359	gastrointestinal). ^{139,151-154} CDT, however, may be as or more effective than systemic
1360	thrombolytic therapy for two reasons: (1) it achieves a high local concentration of thrombolytic
1361	drug by infusing drug directly into the PE; and (2) thrombus fragmentation due to placement of
1362	the infusion catheter in the thrombus or additional maneuvers, or an increase in thrombus
1363	permeability due to ultrasound delivered via the catheter, may enhance endogenous or
1364	pharmacologic thrombolysis. Thrombolytic therapy is usually infused over many hours or
1365	overnight. In emergent situations, systemic thrombolytic therapy can be given while CDT is

being arranged, and active thrombus fragmentation and aspiration (see below) can be combinedwith CDT.

1368

1369 A single randomized trial of 59 patients found that, compared to anticoagulation alone, ultrasound-assisted CDT improved right ventricular function at 24 hours.¹⁵⁵ Observational 1370 studies also suggest that CDT is effective at removing thrombus, lowering pulmonary arterial 1371 pressure and improving right ventricular function without being associated with a high risk of 1372 bleeding.^{151-153,156} Most of these studies are small (less than 30 patients) and retrospective. 1373 although a recent prospective registry of 101 patients and a prospective cohort study of 150 1374 patients also support the efficacy of CDT.^{156,157} Whereas there was no major bleeding in the 1375 registry, there were 15 episodes in the cohort study (10%; no intracranial or fatal bleeds). An 1376 1377 older randomized trial of 34 patients with massive PE found that infusion of rt-PA into a pulmonary artery as opposed to a peripheral vein did not accelerate thrombolysis but caused 1378 more frequent bleeding at the catheter insertion site.¹⁵⁸ No randomized trials or observational 1379 1380 studies have compared contemporary CDT with systemic thrombolytic therapy. For patients who require thrombolytic therapy and do not have a high risk of bleeding, the AT10 panel favored 1381 systemic thrombolytic therapy over CDT because, compared to anticoagulation alone, there is a 1382 higher quality of evidence in support of systemic thrombolytic therapy than for CDT. 1383 1384

1385

1386 *Catheter-based thrombus removal without thrombolytic therapy*

1388	Cathet	er-based mechanical techniques for thrombus removal involve thrombus fragmentation
1389	using	various types of catheters, some of which are designed specifically for this purpose. ¹⁵¹⁻¹⁵⁴
1390	Fragm	entation results in distal displacement of thrombus, with or without suctioning and
1391	remov	al of some thrombus through the catheter. Mechanical methods alone are used when
1392	throm	bus removal is indicated but there is a high risk of bleeding that precludes thrombolytic
1393	therap	y. No randomized trial or prospective cohort studies have evaluated catheter-based
1394	throm	bus removal of PE without thrombolytic therapy.
1395		
1396	Evider	nce for the use of CDT compared to anticoagulation alone, CDT compared to systemic
1397	throm	bolytic therapy, and catheter-based treatment without thrombolytic therapy is of low
1398	quality	and our recommendations are weak.
1399		
1400		
1401	24.	In patients with acute PE who are treated with a thrombolytic agent, we suggest
1402		systemic thrombolytic therapy using a peripheral vein over catheter directed
1403		thrombolysis (CDT) (Grade 2C).
1404		Remarks: Patients who have a higher risk of bleeding with systemic thrombolytic
1405		therapy, and who have access to the expertise and resources required to do CDT, are
1406		likely to choose CDT over systemic thrombolytic therapy.
1407		
1408	25.	In patients with acute PE associated with hypotension and who have (i) a high
1409		bleeding risk, (ii) failed systemic thrombolysis, or (iii) shock that is likely to cause
1410		death before systemic thrombolysis can take effect (e.g. within hours), if appropriate

1411 expertise and resources are available, we suggest catheter assisted thrombus

- 1412 **removal over no such intervention** (Grade 2C).
- 1413 *Remarks*: Catheter assisted thrombus removal refers to mechanical interventions, with or
- 1414 without catheter directed thrombolysis.
- 1415
- 1416

1417	Pulmonary Thromboendarterectomy in for the Treatment of Chronic Thromboembolic
1418	Pulmonary Hypertension
1419	
1420	
1421	Summary of the Evidence
1422	
1423	The AT9 recommendation was based on case series that have shown marked improvements in
1424	cardiopulmonary status after thromboendarterectomy in patients with chronic thromboembolic
1425	pulmonary hypertension (CTEPH). ^{159,160} Although additional case series have been reported, the
1426	quality of the evidence for thromboendarterectomy in patients with CTEPH has not
1427	improved. ^{154,161-163} The AT10 panel decided, however, that our previous recommendation for
1428	thromboendareterectomy in selected patients with CTEPH was too restrictive and could
1429	contribute to suboptimal evaluation and treatment of patients with CTEPH. For example, because
1430	of improvements in surgical technique it is now often possible to remove organized thrombi from
1431	peripheral pulmonary arteries. In patients with inoperable CTEPH or persistent pulmonary
1432	hypertension after pulmonary thromboendarterectomy, there is new evidence from a randomized
1433	trial that pulmonary vasodilator therapy may be of benefit. ¹⁶⁴ For these reasons, we no longer
1434	identify central disease as a selection factor for thromboendarterectomy in patients with CTEPH,
1435	and we emphasize that patients with CTEPH should be assessed by a team with expertise in the
1436	evaluation and management of pulmonary hypertension. ^{154,160,165-167}
1437	

- 1439 26. In selected patients with CTEPH who are identified by an experienced
- 1440 thromboendarterectomy team, we suggest pulmonary thromboendarterectomy over
- 1441 **no pulmonary thromboendarterectomy** (Grade 2C).
- 1442 *Remarks*: Patients with CTEPH should be evaluated by a team with expertise in treatment
- 1443 of pulmonary hypertension. Pulmonary thromboendarterectomy is often life saving and
- 1444 life transforming. Patients with CTEPH who are not candidates for pulmonary
- 1445 thromboendarterectomy may benefit from other mechanical and pharmacological
- 1446 interventions designed to lower pulmonary arterial pressure.
- 1447
- 1448

1449 <u>Thrombolytic Therapy in Patients with Upper Extremity Deep Vein Thrombosis</u> 1450

1451

1452 Summary of the Evidence

1453

The AT9 recommendation was based on: (1) mostly retrospective observational studies 1454 suggesting that thrombolysis could improve short and long term venous patency, but a lack of 1455 data about whether thrombolysis reduced PTS of the arm; (2) occasional reports of bleeding in 1456 patients with upper extremity DVT (UEDVT) who were treated with thrombolysis, and clear 1457 evidence that thrombolysis increases bleeding in other settings; and (3) recognition that, 1458 compared to anticoagulation alone, thrombolytic therapy is complex and costly.^{1 1,168,169} We 1459 suggest that thrombolysis is most likely to be of benefit in patients who meet the following 1460 criteria: severe symptoms; thrombus involving most of the subclavian vein and the axillary vein; 1461 symptoms for <14 days; good functional status; life expectancy of ≥ 1 year; and low risk for 1462 1463 bleeding. We also suggested CDT over systemic thrombolysis to reduce the dose of thrombolytic drug and the risk of bleeding. There is new moderate quality evidence that CDT can reduce PTS 1464 of the leg⁹¹ (Table 14, eTable 15) and that systemic thrombolysis increases bleeding in patients 1465 with acute $PE^{144,148}$, and low quality evidence that CDT can accelerate breakdown of acute PE^{155} . 1466 This evidence has indirect bearing on thrombolysis in patients with UEDVT, but it has not 1467 changed the overall quality of the evidence or our recommendations for use of thrombolysis in 1468 these patients. 1469

1470

1472	27.	In patients with acute UEDVT that involves the axillary or more proximal veins, we
1473		suggest anticoagulant therapy alone over thrombolysis (Grade 2C).
1474		Remarks: Patients who (i) are most likely to benefit from thrombolysis (see text); (ii)
1475		have access to CDT; (iii) attach a high value to prevention of PTS; and (iv) attach a lower
1476		value to the initial complexity, cost, and risk of bleeding with thrombolytic therapy are
1477		likely to choose thrombolytic therapy over anticoagulation alone.
1478		
1479	28.	In patients with UEDVT who undergo thrombolysis, we recommend the same
1480		intensity and duration of anticoagulant therapy as in patients with UEDVT who do
1481		not undergo thrombolysis (Grade 1B).
1482		
1483		
1484		CHR HEIR

1485	Management of Recurrent Venous Thromboembolism on Anticoagulant Therapy
1486	
1487	
1488	Summary of Evidence
1489	
1490	There are no randomized trials or prospective cohort studies that have evaluated management of
1491	patients with recurrent VTE on anticoagulant therapy. Consequently, management is based on
1492	low quality evidence and an assessment of the probable reason for the recurrence. Risk factors
1493	for recurrent VTE while on anticoagulant therapy can be divided into two broad categories: (1)
1494	treatment factors; and (2) the patient's intrinsic risk of recurrence. How a new event should be
1495	treated will depend on the reason(s) for recurrence.
1496	
1497	
1498	Treatment factors
1499	
1500	The risk of recurrent VTE decreases rapidly after starting anticoagulant therapy, with a much
1501	higher risk during the first week (or month) compared to the second week (or month). ^{170,171} A
1502	recurrence soon after starting therapy can generally be managed by a time limited (e.g. 1 month)
1503	period of more aggressive anticoagulant intensity (e.g. switching from an oral agent back to
1504	LMWH, or an increase in LMWH dose). Other treatment factors that are associated with
1505	recurrent VTE and will suggest specific approaches to management include: (1) was LMWH
1506	being used; (2) was the patient adherent; (3) was VKA subtherapeutic; (4) was anticoagulant

1507	therapy prescribed correctly; (5) was the patient taking a NOAC and a drug that reduced
1508	anticoagulant effect; and (6) had anticoagulant dose been reduced (drugs other than VKA).
1509	
1510	There is moderate quality evidence that LMWH is more effective than VKA therapy in patients
1511	with VTE and cancer. A switch to full-dose LMWH, therefore, is often made if there has been an
1512	unexplained recurrent VTE on VKA therapy or a NOAC. If the recurrence happened on LMWH,
1513	the dose of LMWH can be increased. If the dose of LMWH was previously reduced (e.g. by 25%
1514	after 1 month of treatment), it is usually increased to the previous level. If the patient was
1515	receiving full-dose LMWH, the dose may be increased by about 25%. In practice, the increase in
1516	dose is often influenced by the LMWH prefilled syringe dose options that are available. Once-
1517	daily LMWH may also be switched to a twice-daily regimen, particularly if two injections are
1518	required to deliver the increase in LMWH dose. Treatment adherence, including compliance, can
1519	be difficult to assess; for example, symptoms of a recurrent DVT may encourage medication
1520	adherence and a return of coagulation results to the "therapeutic range".
1521	
1522	
1523	Patient Factors
1524	
1525	The most important intrinsic risk factor for recurrent VTE while on anticoagulant therapy is

active cancer, with an unexplained recurrence often pointing to yet to be diagnosed disease.

1527 Antiphospholipid syndrome is also associated with recurrent VTE, either because of associated

1528 hypercoagulability or because a lupus anticoagulant has led to underdosing of VKA due to

spurious increases in INR results. Anticoagulated patients may be taking medications that

1530	increa	ase the risk of thrombosis such as estrogens or cancer chemotherapy, in which case these		
1531	treatments may be withdrawn.			
1532				
1533	A reti	A retrospective observational study found an acceptable risk of recurrence (8.6%) and major		
1534	bleed	ing (1.4%) during 3 months follow-up in 70 cancer patients with recurrent VTE while on		
1535	antico	pagulant therapy who either switched from VKA therapy to LMWH (23 patients) or had		
1536	their	LMWH dose increased by about 25% (47 patients). ¹⁷² If there is no reversible reason for		
1537	recuri	rent VTE while on anticoagulant therapy, and anticoagulant intensity cannot be increased		
1538	becau	se of risk of bleeding, a vena caval filter can be inserted to prevent PE. ¹⁷³ However, it is		
1539	not known if insertion of a filter in these circumstances is worthwhile, and the AT10 panel			
1540	consider this an option of last resort.			
1541				
1542				
1543	29.	In patients who have recurrent VTE on VKA therapy (in the therapeutic range) or		
1544		on dabigatran, rivaroxaban, apixaban or edoxaban (and are believed to be		
1545		compliant), we suggest switching to treatment with LMWH at least temporarily		
1546		(Grade 2C).		
1547		Remarks: Recurrent VTE while on therapeutic-dose anticoagulant therapy is unusual and		
1548		should prompt the following assessments: (1) reevaluation of whether there truly was a		
1549		recurrent VTE; (2) evaluation of compliance with anticoagulant therapy; and (3)		
1550		consideration of an underlying malignancy. A temporary switch to LMWH will usually be		
1551		for at least one month.		
1552				

1553	30.	In patients who have recurrent VTE on long-term LMWH (and are believed to be
1554		compliant) we suggest increasing the dose of LMWH by about one-quarter to one-
1555		third (Grade 2C).
1556		Remarks: Recurrent VTE while on therapeutic-dose anticoagulant therapy is unusual and
1557		should prompt the following assessments: (1) reevaluation of whether there truly was a
1558		recurrent VTE; (2) evaluation of compliance with anticoagulant therapy; and (3)
1559		consideration of an underlying malignancy.
1560		
1561		
1562		
1563		

1564 Conclusion

1566

1567 There is substantial new evidence since AT9 about how to treat VTE. This evidence led the panel to change many of the AT9 recommendations that are included in this update, and has 1568 strengthened the evidence quality that underlies others that are unchanged. We now suggest the 1569 use of NOACs over VKA for the treatment of VTE in patients without cancer. While we still 1570 suggest LMWH as the preferred long-term treatment for VTE and cancer, we no longer suggest 1571 1572 VKA over NOACs in these patients. Although we note factors in individual patients that may favor selection of one NOAC over another in patients without or with cancer, or may favor 1573 selection of either a NOAC or VKA in patients with cancer, we have not expressed an overall 1574 1575 preference for one NOAC over another, or for either a NOAC or VKA in patients with cancer, because: (1) there are no direct comparisons of different NOACs; (2) NOACs have not been 1576 compared to VKA in a broad spectrum of patients with VTE and cancer; and (3) indirect 1577 1578 comparisons have not shown convincingly different outcomes with different NOACs. Another notable change in AT10 is that, based on a new low risk of bias study, we now suggest that 1579 graduated compression stocking are not routinely used to prevent PTS. Recommendations that 1580 are unchanged but are now supported by better evidence include: (1) discouragement of IVC 1581 filter use in anticoagulated patients; (2) encouragement of indefinite anticoagulant therapy after a 1582 1583 first unprovoked PE; and (3) discouragement of thrombolytic therapy in PE patients who are not hypotensive and are not deteriorating on anticoagulation. 1584

1585

1586 Of the 54 recommendations that are included in the 30 statements in this update, 20 (38%) are 1587 strong recommendations (Grade 1) and none are based on high quality (Grade A) evidence. The absence of high quality evidence highlights the need for further research to guide VTE treatment 1588 1589 decisions. As new evidence becomes available, these guidelines will need to be updated. Goals of our group and CHEST include transition to continually updated "living guidelines". The 1590 modular format of this update is designed to facilitate this development, with individual topics 1591 1592 and questions being addressed as new evidence becomes available. We will also facilitate implementation of our recommendations into practice by developing new and convenient ways 1593 to disseminate our recommendations. This will enable achievement of another of our goals — 1594 reduction in the burden of VTE in individual patients and in the general population. 1595

1596	Acknowledgments
1597	
1598	The roles of the panelists include the following:
1599	
1600	Clive Kearon, MD, PhD – chair, executive committee member, topic editor for "Treatment of
1601	Acute Pulmonary Embolism Out of Hospital" and "Pulmonary Thromboendarterectomy in the
1602	Treatment of Chronic Thromboembolic Pulmonary Hypertension"
1603	
1604	Elie Akl, MD, MPH, PhD – methodologist, executive committee member, topic editor for
1605	"Compression Stocking to Prevent Post-Thrombotic Syndrome" and "Thrombolytic Therapy in
1606	Patients with Upper Extremity Deep Vein Thrombosis"
1607	
1608	Joseph Ornelas, PhD – methodologist, executive committee member
1609	
1610	Allen Blaivas, DO, FCCP – GOC Liaison, executive committee member, topic editor for
1611	"Compression Stocking to Prevent Post-Thrombotic Syndrome" and "Thrombolytic Therapy in
1612	Patients with Upper Extremity Deep Vein Thrombosis"
1613	
1614	David Jimenez, MD, PhD, FCCP - executive committee member, topic editor for "Pulmonary
1615	Thromboendarterectomy in the Treatment of Chronic Thromboembolic Pulmonary
1616	Hypertension" and "Management of Recurrent Venous Thromboembolism on Anticoagulant
1617	Therapy"
1618	

1619	Henri Bounameaux, MD – topic editor for "Whether and How to Anticoagulate Patients with
1620	Isolated Distal Deep Vein Thrombosis" and "Catheter-Directed Thrombolysis for Acute Deep
1621	Vein Thrombosis of the Leg"
1622	
1623	Menno Huisman, MD, PhD – topic editor for "Catheter-Directed Thrombolysis for Acute Deep
1624	Vein Thrombosis of the Leg" and "Duration of Anticoagulant Therapy"
1625	
1626	Christopher King, MD, FCCP – topic editor for "Whether to Anticoagulate Subsegmental
1627	Pulmonary Embolism" and "Management of Recurrent Venous Thromboembolism on
1628	Anticoagulant Therapy"
1629	
1630	Timothy Morris, MD, FCCP – topic editor for "Catheter-Based Thrombus Removal for the
1631	Initial Treatment of Pulmonary Embolism" and "Choice of Long-Term (First 3 Months) and
1632	Extended (No Scheduled Stop Date) Anticoagulant"
1633	
1634	Namita Sood, MD, FCCP – topic editor for "Whether and How to Anticoagulate Isolated Distal
1635	Deep Vein Thrombosis " and "Treatment of Acute Pulmonary Embolism Out of Hospital"
1636	
1637	Scott Stevens, MD – topic editor for "Systemic Thrombolytic Therapy for Pulmonary
1638	Embolism" and "Catheter-Based Thrombus Removal for the Initial Treatment of Pulmonary
1639	Embolism"
1640	

1641	Janine Vintch,	, MD, FCCP	- topic edi	tor for "S	vstemic T	hrombolytic	Therapy for	· Pulmonary

1642 Embolism" and "Duration of Anticoagulant Therapy"

1643

1644 Philip Wells, MD – topic editor for "Catheter-Based Thrombus Removal for the Initial

1645 Treatment of Pulmonary Embolism" and "Aspirin for Extended Treatment of Venous

1646 Thromboembolism"

1647

1648 Scott Woller, MD – topic editor for "Systemic Thrombolytic Therapy for Pulmonary Embolism"

and "Choice of Long-Term (First 3 Months) and Extended (No Scheduled Stop Date)

1650 Anticoagulant"

1651

Col. Lisa Moores, MD, FCCP – overall guideline editor, executive committee member, topic
editor for "Whether to Anticoagulate Subsegmental Pulmonary Embolism", "Role of Inferior
Vena Caval Filter in Addition to Anticoagulation in Patients with Acute Deep Vein Thrombosis
or Pulmonary Embolism" and "Aspirin for Extended Treatment of Venous Thromboembolism"

1657 All the authors would like to acknowledge the contributions of previous authors of the CHEST

1658 Antithrombotic Guidelines.

1660	.660 <u>References</u>			
1661				
1662				
1663	1.	Kearon C, Akl EA, Comerota AJ, et al. Antithrombotic therapy for VTE disease:		
1664		Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of		
1665		Chest Physicians Evidence-Based Clinical Practice Guidelines. <i>Chest.</i> 2012;141(2		
1666	2	Suppl):e419S-494S.		
1667	2.	Guyatt G, Akl EA, Hirsh J, et al. The Vexing Problem of Guidelines and Conflict of		
1668	3.	Interest: A Potential Solution. <i>Annals of Internal Medicine</i> . 2010;152(11):738-741. Shea BJ, Grimshaw JM, Wells GA, et al. Development of AMSTAR: a measurement tool		
1669 1670	5.	to assess the methodological quality of systematic reviews. <i>BMC medical research</i>		
1670		methodology. 2007;7:10.		
1671	4.	Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration's tool for		
1673	т.	assessing risk of bias in randomised trials. <i>BMJ</i> . 2011;343:d5928.		
1674	5.	Guyatt GH, Oxman AD, Vist G, et al. GRADE guidelines: 4. Rating the quality of		
1675	5.	evidence—study limitations (risk of bias). Journal of Clinical Epidemiology.64(4):407-		
1676		415.		
1677	6.	Balshem H, Helfand M, Schünemann HJ, et al. GRADE guidelines: 3. Rating the quality		
1678	0.	of evidence. Journal of Clinical Epidemiology.64(4):401-406.		
1679	7.	Guyatt G, Gutterman D, Baumann MH, et al. Grading strength of recommendations and		
1680		quality of evidence in clinical guidelines: report from an american college of chest		
1681		physicians task force. <i>Chest.</i> 2006;129(1):174-181.		
1682	8.	Guyatt GH, Oxman AD, Montori V, et al. GRADE guidelines: 5. Rating the quality of		
1683		evidence—publication bias. Journal of Clinical Epidemiology.64(12):1277-1282.		
1684	9.	Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines 6. Rating the quality of		
1685		evidence—imprecision. Journal of Clinical Epidemiology.64(12):1283-1293.		
1686	10.	Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines: 7. Rating the quality of		
1687		evidence—inconsistency. Journal of Clinical Epidemiology.64(12):1294-1302.		
1688	11.	Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines: 8. Rating the quality of		
1689		evidence—indirectness. Journal of Clinical Epidemiology.64(12):1303-1310.		
1690	12.	Guyatt GH, Oxman AD, Sultan S, et al. GRADE guidelines: 9. Rating up the quality of		
1691		evidence. Journal of Clinical Epidemiology.64(12):1311-1316.		
1692	13.	Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction—GRADE		
1693		evidence profiles and summary of findings tables. <i>Journal of Clinical</i>		
1694	1.4	Epidemiology.64(4):383-394.		
1695	14.	Andrews J, Guyatt G, Oxman AD, et al. GRADE guidelines: 14. Going from evidence to		
1696		recommendations: the significance and presentation of recommendations. <i>Journal of</i>		
1697	17	Clinical Epidemiology.66(7):719-725.		
1698	15.	Andrews JC, Schünemann HJ, Oxman AD, et al. GRADE guidelines: 15. Going from		
1699		evidence to recommendation—determinants of a recommendation's direction and		
1700	16	strength. Journal of Clinical Epidemiology.66(7):726-735.		
1701	16.	MacLean S, Mulla S, Akl EA, et al. Patient values and preferences in decision making for		
1702		antithrombotic therapy: a systematic review: Antithrombotic Therapy and Prevention of		

1703		Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical
1704		Practice Guidelines. Chest. 2012;141(2 Suppl):e1S-23S.
1705	17.	Jones J, Hunter D. Consensus methods for medical and health services research. Bmj.
1706		1995;311(7001):376-380.
1707	18.	Lewis SZ, Diekemper R, Ornelas J, Casey KR. Methodologies for the development of
1708		CHEST guidelines and expert panel reports. <i>Chest.</i> 2014;146(1):182-192.
1709	19.	Jaeschke R, Guyatt GH, Dellinger P, et al. Use of GRADE grid to reach decisions on
1710		clinical practice guidelines when consensus is elusive. <i>BMJ</i> . 2008;337:a744.
1711	20.	Schulman S, Kearon C, Kakkar AK, et al. Dabigatran versus warfarin in the treatment of
1712		acute venous thromboembolism. <i>N Engl J Med.</i> 2009;361(24):2342-2352.
1713	21.	Bauersachs R, Berkowitz SD, Brenner B, et al. Oral rivaroxaban for symptomatic venous
1714		thromboembolism. N Engl J Med. 2010;363(26):2499-2510.
1715	22.	Lee AY, Kamphuisen PW, Meyer G, et al. Tinzaparin vs Warfarin for Treatment of
1716		Acute Venous Thromboembolism in Patients With Active Cancer: A Randomized
1717		Clinical Trial. JAMA. 2015;314(7):677-686.
1718	23.	Hokusai VTEI, Buller HR, Decousus H, et al. Edoxaban versus warfarin for the treatment
1719		of symptomatic venous thromboembolism. N Engl J Med. 2013;369(15):1406-1415.
1720	24.	Schulman S, Kakkar AK, Goldhaber SZ, et al. Treatment of acute venous
1721		thromboembolism with dabigatran or warfarin and pooled analysis. Circulation.
1722		2014;129(7):764-772.
1723	25.	Agnelli G, Buller HR, Cohen A, et al. Oral apixaban for the treatment of acute venous
1724		thromboembolism. N Engl J Med. 2013;369(9):799-808.
1725	26.	Investigators E-P, Buller HR, Prins MH, et al. Oral rivaroxaban for the treatment of
1726		symptomatic pulmonary embolism. N Engl J Med. 2012;366(14):1287-1297.
1727	27.	van Es N, Coppens M, Schulman S, Middeldorp S, Buller HR. Direct oral anticoagulants
1728		compared with vitamin K antagonists for acute venous thromboembolism: evidence from
1729		phase 3 trials. <i>Blood</i> . 2014;124(12):1968-1975.
1730	28.	Holster IL, Valkhoff VE, Kuipers EJ, Tjwa ET. New oral anticoagulants increase risk for
1731		gastrointestinal bleeding: a systematic review and meta-analysis. Gastroenterology.
1732		2013;145(1):105-112 e115.
1733	29.	Gomez-Outes A, Terleira-Fernandez AI, Lecumberri R, Suarez-Gea ML, Vargas-
1734		Castrillon E. Direct oral anticoagulants in the treatment of acute venous
1735		thromboembolism: a systematic review and meta-analysis. Thromb Res.
1736		2014;134(4):774-782.
1737	30.	Fox BD, Kahn SR, Langleben D, Eisenberg MJ, Shimony A. Efficacy and safety of novel
1738		oral anticoagulants for treatment of acute venous thromboembolism: direct and adjusted
1739		indirect meta-analysis of randomised controlled trials. BMJ. 2012;345:e7498.
1740	31.	van der Hulle T, Kooiman J, den Exter PL, Dekkers OM, Klok FA, Huisman MV.
1741		Effectiveness and safety of novel oral anticoagulants as compared with vitamin K
1742		antagonists in the treatment of acute symptomatic venous thromboembolism: a systematic
1743		review and meta-analysis. J Thromb Haemost. 2014;12(3):320-328.
1744	32.	Mantha S, Ansell J. Indirect comparison of dabigatran, rivaroxaban, apixaban and
1745		edoxaban for the treatment of acute venous thromboembolism. J Thromb Thrombolysis.
1746		2015;39(2):155-165.

1747 1748 1749	33.	Chai-Adisaksopha C, Crowther M, Isayama T, Lim W. The impact of bleeding complications in patients receiving target-specific oral anticoagulants: a systematic review and meta-analysis. <i>Blood.</i> 2014;124(15):2450-2458.
1750	34.	Wu C, Alotaibi GS, Alsaleh K, Linkins LA, Sean McMurtry M. Case-fatality of recurrent
1751	54.	venous thromboembolism and major bleeding associated with aspirin, warfarin, and
1752	25	direct oral anticoagulants for secondary prevention. <i>Thromb Res.</i> 2015;135(2):243-248.
1753	35.	Castellucci LA, Cameron C, Le Gal G, et al. Clinical and safety outcomes associated with
1754		treatment of acute venous thromboembolism: a systematic review and meta-analysis.
1755	26	JAMA. 2014;312(11):1122-1135.
1756	36.	Carrier M, Cameron C, Delluc A, Castellucci L, Khorana AA, Lee AY. Efficacy and
1757		safety of anticoagulant therapy for the treatment of acute cancer-associated thrombosis: a
1758	27	systematic review and meta-analysis. <i>Thromb Res</i> . 2014;134(6):1214-1219.
1759	37.	Vedovati MC, Germini F, Agnelli G, Becattini C. Direct Oral Anticoagulants in Patients
1760		With VTE and Cancer: A Systematic Review and Meta-analysis. <i>Chest.</i>
1761	• •	2015;147(2):475-483.
1762	38.	Di Minno MN, Ageno W, Dentali F. Meta-analysis of the efficacy and safety of new oral
1763		anticoagulants in patients with cancer-associated acute venous thromboembolism:
1764		comment. J Thromb Haemost. 2014;12(12):2136-2138.
1765	39.	Franchini M, Bonfanti C, Lippi G. Cancer-associated thrombosis: investigating the role
1766		of new oral anticoagulants. Thromb Res. 2015;135(5):777-781.
1767	40.	Bochenek T, Nizankowski R. The treatment of venous thromboembolism with low-
1768		molecular-weight heparins. A meta-analysis. Thromb Haemost. 2012;107(4):699-716.
1769	41.	Bloom BJ, Filion KB, Atallah R, Eisenberg MJ. Meta-analysis of randomized controlled
1770		trials on the risk of bleeding with dabigatran. Am J Cardiol. 2014;113(6):1066-1074.
1771	42.	Touma L, Filion KB, Atallah R, Eberg M, Eisenberg MJ. A meta-analysis of randomized
1772		controlled trials of the risk of bleeding with apixaban versus vitamin K antagonists. Am J
1773		<i>Cardiol</i> . 2015;115(4):533-541.
1774	43.	Abraham NS, Singh S, Alexander GC, et al. Comparative risk of gastrointestinal bleeding
1775		with dabigatran, rivaroxaban, and warfarin: population based cohort study. BMJ.
1776		2015;350:h1857.
1777	44.	Kang N, Sobieraj DM. Indirect treatment comparison of new oral anticoagulants for the
1778		treatment of acute venous thromboembolism. <i>Thromb Res.</i> 2014;133(6):1145-1151.
1779	45.	Majeed A, Hwang HG, Connolly SJ, et al. Management and outcomes of major bleeding
1780		during treatment with dabigatran or warfarin. Circulation. 2013;128(21):2325-2332.
1781	46.	Kearon C, Ginsberg JS, Kovacs MJ, et al. Comparison of low-intensity warfarin therapy
1782		with conventional-intensity warfarin therapy for long-term prevention of recurrent
1783		venous thromboembolism. New England Journal Medicine. 2003;349:631-639.
1784	47.	Schulman S, Kearon C, Kakkar AK, et al. Extended use of dabigatran, warfarin, or
1785		placebo in venous thromboembolism. N Engl J Med. 2013;368(8):709-718.
1786	48.	Agnelli G, Buller HR, Cohen A, et al. Apixaban for extended treatment of venous
1787		thromboembolism. N Engl J Med. 2013;368(8):699-708.
1788	49.	Castellucci LA, Cameron C, Le Gal G, et al. Efficacy and safety outcomes of oral
1789		anticoagulants and antiplatelet drugs in the secondary prevention of venous
1790		thromboembolism: systematic review and network meta-analysis. BMJ. 2013;347:f5133.

1791	50.	Sobieraj DM, Coleman CI, Pasupuleti V, Deshpande A, Kaw R, Hernandez AV.
1792		Comparative efficacy and safety of anticoagulants and aspirin for extended treatment of
1793		venous thromboembolism: A network meta-analysis. <i>Thromb Res.</i> 2015;135(5):888-896.
1794	51.	Iorio A, Kearon C, Filippucci E, et al. Risk of recurrence after a first episode of
1795		symptomatic venous thromboembolism provoked by a transient risk factor: a systematic
1796		review. Arch Intern Med. 2010;170(19):1710-1716.
1797	52.	Boutitie F, Pinede L, Schulman S, et al. Influence of preceding length of anticoagulant
1798	02.	treatment and initial presentation of venous thromboembolism on risk of recurrence after
1799		stopping treatment: analysis of individual participants' data from seven trials. <i>BMJ</i> .
1800		2011;342:d3036.
1801	53.	Prandoni P, Noventa F, Ghirarduzzi A, et al. The risk of recurrent venous
1801	55.	thromboembolism after discontinuing anticoagulation in patients with acute proximal
1802		deep vein thrombosis or pulmonary embolism. A prospective cohort study in 1,626
1803		patients. <i>Haematologica</i> . 2007;92(2):199-205.
	51	
1805	54.	Prandoni P, Lensing AWA, Cogo A, et al. The long-term clinical course of acute deep
1806	F F	venous thrombosis. Annals of Internal Medicine. 1996;125:1-7.
1807	55.	Palareti G, Legnani C, Lee A, et al. A comparison of the safety and efficacy of oral
1808		anticoagulation for the treatment of venous thromboembolic disease in patients with or
1809	5.0	without malignancy. <i>Thromb Haemost</i> . 2000;84(5):805-810.
1810	56.	Baglin T, Douketis J, Tosetto A, et al. Does the clinical presentation and extent of venous
1811		thrombosis predict likelihood and type of recurrence? A patient level meta-analysis. J
1812		<i>Thromb Haemost.</i> 2010;8:2436-2442.
1813	57.	Boutitie FP, L.;Schulman,S.; Agnelli,G.; Raskob,G.; Julian,J.; Hirsh,J.; Kearon,C.
1814		Influence of preceding duration of anticoagulant therapy and initial presentation of
1815		venous thromboembolism on risk of recurrence after stopping therapy: analysis of
1816		individualparticipant data from seven trials. BMJ. 2011;In Press(x):x.
1817	58.	Hansson PO, Sorbo J, Eriksson H. Recurrent venous thromboembolism after deep vein
1818		thrombosis: incidence and risk factors. Archives of Internal Medicine. 2000;160(6):769-
1819		774.
1820	59.	Schulman S, Wahlander K, Lundstrîm T, Clason SB, Eriksson H, for the TIIII. Secondary
1821		prevention of venous thromboembolism with the oral direct thrombin inhibitor
1822		ximelagatran. New England Journal Medicine. 2003;349:1713-1721.
1823	60.	Napolitano M, Saccullo G, Malato A, et al. Optimal duration of low molecular weight
1824		heparin for the treatment of cancer-related deep vein thrombosis: the Cancer-DACUS
1825		Study. J Clin Oncol. 2014;32(32):3607-3612.
1826	61.	Couturand F SO, Pernod G, Mismetti P, Jego P, Duhamel E, Provost K, Bal dit Sollier C,
1827		Presles E, Castellant P, Parent F, Salaun P, Bressollette L, Nonent M, Lorillon P, Girard
1828		P, Lacut K, Guégan M, Bosson J, Laporte S, Leroyer C, Décousus H, Meyer G, Mottier
1829		D, for the PADIS-PE Investigators. Two years versus six months of oral anticoagulation
1830		after a first episode of unprovoked pulmonary embolism. The PADIS-PE multicenter,
1831		double-blind, randomized, trial. 2015.
1832	62.	Kearon C, Gent M, Hirsh J, et al. A comparison of three months of anticoagulation with
1833		extended anticoagulation for a first episode of idiopathic venous thromboembolism. <i>New</i>
1834		England Journal of Medicine. 1999;340:901-907.

1835	63.	Ridker PM, Goldhaber S Z, Danielson E, et al. Long-term, low-intensity warfarin therapy
1836		for prevention of recurrent venous thromboembolism. New England Journal Medicine.
1837		2003;348:1425-1434.
1838	64.	Farraj RS. Anticoagulation period in idiopathic venous thromboembolism. How long is
1839		enough? Saudi Med J. 2004;25(7):848-851.
1840	65.	Palareti G, Cosmi B, Legnani C, et al. D-dimer testing to determine the duration of
1841		anticoagulation therapy. N.Engl.J Med. 2006;355(17):1780-1789.
1842	66.	Schulman S, Granqvist S, Holmstrom M, et al. The duration of oral anticoagulant therapy
1843		after a second episode of venous thromboembolism. The New England Journal of
1844		Medicine. 1997;336:393-398.
1845	67.	Douketis J, Tosetto A, Marcucci M, et al. Risk of recurrence after venous
1846		thromboembolism in men and women: patient level meta-analysis. BMJ. 2011;342:d813.
1847	68.	Douketis J, Tosetto A, Marcucci M, et al. Patient-level meta-analysis: effect of
1848		measurement timing, threshold, and patient age on ability of D-dimer testing to assess
1849		recurrence risk after unprovoked venous thromboembolism. Ann Intern Med.
1850		2010;153(8):523-531.
1851	69.	Palareti G, Cosmi B, Legnani C, et al. D-dimer to guide the duration of anticoagulation in
1852	07.	patients with venous thromboembolism: a management study. <i>Blood.</i> 2014;124(2):196-
1853		203.
1854	70.	Kearon C, Spencer FA, O'Keeffe D, et al. D-dimer testing to select patients with a first
1855	/0.	unprovoked venous thromboembolism who can stop anticoagulant therapy: a cohort
1856		study. Ann Intern Med. 2015;162(1):27-34.
1857	71.	Brighton TA, Eikelboom JW, Mann K, et al. Low-dose aspirin for preventing recurrent
1858	, 1.	venous thromboembolism. N Engl J Med. 2012;367(21):1979-1987.
1859	72.	Becattini C, Agnelli G, Schenone A, et al. Aspirin for preventing the recurrence of
1860	12.	venous thromboembolism. N Engl J Med. 2012;366(21):1959-1967.
1861	73.	Simes J, Becattini C, Agnelli G, et al. Aspirin for the prevention of recurrent venous
1862	15.	thromboembolism: the INSPIRE collaboration. <i>Circulation</i> . 2014;130(13):1062-1071.
1863	74.	Bates SM, Jaeschke R, Stevens SM, et al. Diagnosis of Deep Vein Thrombosis: ACCP
1864	/ 1.	Evidence-Based Clinical Practice Guidelines (Ninth Edition). <i>Chest</i> . 2012.
1865	75.	Righini M, Paris S, Le Gal G, Laroche JP, Perrier A, Bounameaux H. Clinical relevance
1866	15.	of distal deep vein thrombosis. Review of literature data. <i>Thromb Haemost</i> .
1867		2006;95(1):56-64.
1868	76.	Masuda EM, Kistner RL. The case for managing calf vein thrombi with duplex
1869	70.	surveillance and selective anticoagulation. <i>Dis Mon.</i> 2010;56(10):601-613.
1809	77.	Masuda EM, Kistner RL, Musikasinthorn C, Liquido F, Geling O, He Q. The controversy
1870	//.	of managing calf vein thrombosis. <i>Journal of Vascular Surgery</i> . 2012;55(2):550-561.
1872	78.	De Martino RR, Wallaert JB, Rossi AP, Zbehlik AJ, Suckow B, Walsh DB. A meta-
1873	78.	analysis of anticoagulation for calf deep venous thrombosis. <i>Journal of Vascular Surgery</i> .
		2012;56(1):228-237.e221.
1874 1975	70	Spencer F, Kroll A, Lessard D, et al. Isolated calf deep vein thrombosis in the community
1875	79.	
1876		setting: the Worcester Venous Thromboembolism study. <i>Journal of Thrombosis and</i>
1877	80	Thrombolysis. 2012;33(3):211-217.
1878	80.	Hughes MJ, Stein PD, Matta F. Silent pulmonary embolism in patients with distal deep
1879		venous thrombosis: systematic review. <i>Thromb Res.</i> 2014;134(6):1182-1185.

1880	81.	Kearon C. Natural history of venous thromboembolism. <i>Circulation</i> . 2003;107:I-22-21-
1881	00	30.
1882 1883	82.	Macdonald PS, Kahn SR, Miller N, Obrand D. Short-term natural history of isolated gastrocnemius and soleal vein thrombosis. <i>J Vasc Surg.</i> 2003;37(3):523-527.
1884	83.	Parisi R, Visona A, Camporese G, et al. Isolated distal deep vein thrombosis: efficacy and
1885	05.	safety of a protocol of treatment. Treatment of Isolated Calf Thrombosis (TICT) Study.
1886		Int Angiol. 2009;28(1):68-72.
1887	84.	Palareti G. How I treat isolated distal deep vein thrombosis (IDDVT). <i>Blood</i> .
1888		2014;123(12):1802-1809.
1889	85.	Galanaud JP, Sevestre MA, Genty C, et al. Incidence and predictors of venous
1890		thromboembolism recurrence after a first isolated distal deep vein thrombosis. J Thromb
1891		Haemost. 2014;12(4):436-443.
1892	86.	Schwarz T, Buschmann L, Beyer J, Halbritter K, Rastan A, Schellong S. Therapy of
1893		isolated calf muscle vein thrombosis: a randomized, controlled study. J Vasc Surg.
1894		2010;52(5):1246-1250.
1895	87.	Elsharawy M, Elzayat E. Early results of thrombolysis vs anticoagulation in iliofemoral
1896		venous thrombosis. A randomised clinical trial. Eur.J Vasc Endovasc.Surg.
1897		2002;24(3):209-214.
1898	88.	Enden T, Klow NE, Sandvik L, et al. Catheter-directed thrombolysis vs. anticoagulant
1899		therapy alone in deep vein thrombosis: results of an open randomized, controlled trial
1900		reporting on short-term patency. J Thromb Haemost. 2009;7(8):1268-1275.
1901	89.	Enden T, Sandvik L, Klow NE, et al. Catheter-directed Venous Thrombolysis in acute
1902		iliofemoral vein thrombosisthe CaVenT study: rationale and design of a multicenter,
1903		randomized, controlled, clinical trial (NCT00251771). Am Heart J. 2007;154(5):808-814.
1904	90.	Haig Y, Enden T, Slagsvold CE, Sandvik L, Sandset PM, Klow NE. Determinants of
1905		early and long-term efficacy of catheter-directed thrombolysis in proximal deep vein
1906		thrombosis. J Vasc Interv Radiol. 2013;24(1):17-24; quiz 26.
1907	91.	Enden T, Haig Y, Klow NE, et al. Long-term outcome after additional catheter-directed
1908		thrombolysis versus standard treatment for acute iliofemoral deep vein thrombosis (the
1909		CaVenT study): a randomised controlled trial. Lancet. 2012;379(9810):31-38.
1910	92.	Enden T, Resch S, White C, Wik HS, Klow NE, Sandset PM. Cost-effectiveness of
1911		additional catheter-directed thrombolysis for deep vein thrombosis. J Thromb Haemost.
1912		2013;11(6):1032-1042.
1913	93.	Watson LI, Armon MP. Thrombolysis for acute deep vein thrombosis. <i>Cochrane</i>
1914		Database Syst Rev. 2004(4):Cd002783.
1915	94.	Bashir R, Zack CJ, Zhao H, Comerota AJ, Bove AA. Comparative outcomes of catheter-
1916		directed thrombolysis plus anticoagulation vs anticoagulation alone to treat lower-
1917		extremity proximal deep vein thrombosis. JAMA internal medicine. 2014;174(9):1494-
1918	~ ~	
1919	95.	Engelberger RP, Fahrni J, Willenberg T, et al. Fixed low-dose ultrasound-assisted
1920		catheter-directed thrombolysis followed by routine stenting of residual stenosis for acute
1921	06	ilio-femoral deep-vein thrombosis. <i>Thromb Haemost</i> . 2014;111(6):1153-1160.
1922	96.	Decousus H, Leizorovicz A, Parent F, et al. A clinical trial of vena caval filters in the
1923		prevention of pulmonary embolism in patients with proximal deep-vein thrombosis. <i>N</i>
1924		Engl J Med. 1998;338:409-415.

Eight-year follow-up of patients with permanent vena cava filters in the prevention of

1926 pulmonary embolism: the PREPIC (Prevention du Risque d'Embolie Pulmonaire par Interruption Cave) randomized study. Circulation. 2005;112(3):416-422. 1927 1928 98. Stein PD, Matta F. Vena cava filters in unstable elderly patients with acute pulmonary embolism. Am J Med. 2014;127(3):222-225. 1929 99. Stein PD, Matta F, Keyes DC, Willyerd GL. Impact of vena cava filters on in-hospital 1930 case fatality rate from pulmonary embolism. Am J Med. 2012;125(5):478-484. 1931 1932 100. Muriel A, Jimenez D, Aujesky D, et al. Survival effects of inferior vena cava filter in patients with acute symptomatic venous thromboembolism and a significant bleeding 1933 1934 risk. J Am Coll Cardiol. 2014;63(16):1675-1683. Prasad V, Rho J, Cifu A. The inferior vena cava filter: how could a medical device be so 1935 101. well accepted without any evidence of efficacy? JAMA internal medicine. 1936 2013;173(7):493-495; discussion 495. 1937 102. Girard P, Meyer G, Parent F, Mismetti P. Medical literature, vena cava filters and 1938 evidence of efficacy. A descriptive review. Thromb Haemost. 2014;111(4):761-769. 1939 1940 103. Mismetti P, Laporte S, Pellerin O, et al. Effect of a retrievable inferior vena cava filter 1941 plus anticoagulation vs anticoagulation alone on risk of recurrent pulmonary embolism: a randomized clinical trial. JAMA. 2015;313(16):1627-1635. 1942 Brandjes DP, Buller HR, Heijboer H, et al. Randomised trial of effect of compression 1943 104. stockings in patients with symptomatic proximal-vein thrombosis. Lancet. 1944 1997:349(9054):759-762. 1945 Prandoni P, Lensing AW, Prins MH, et al. Below-knee elastic compression stockings to 1946 105. 1947 prevent the post-thrombotic syndrome: a randomized, controlled trial. Ann.Intern.Med. 2004;141(4):249-256. 1948 106. Kahn SR, Comerota AJ, Cushman M, et al. The postthrombotic syndrome: evidence-1949 1950 based prevention, diagnosis, and treatment strategies: a scientific statement from the American Heart Association. Circulation. 2014;130(18):1636-1661. 1951 Kahn SR, Shapiro S, Wells PS, et al. Compression stockings to prevent post-thrombotic 107. 1952 1953 syndrome: a randomised placebo-controlled trial. Lancet. 2014;383(9920):880-888. Kahn SR, Shapiro S, Ducruet T, et al. Graduated compression stockings to treat acute leg 1954 108. pain associated with proximal DVT. A randomised controlled trial. Thromb Haemost. 1955 1956 2014;112(6):1137-1141. Wiener RS, Schwartz LM, Woloshin S. When a test is too good: how CT pulmonary 1957 109. angiograms find pulmonary emboli that do not need to be found. BMJ. 2013;347:f3368. 1958 Carrier M, Righini M, Wells PS, et al. Subsegmental pulmonary embolism diagnosed by 1959 110. computed tomography: incidence and clinical implications. A systematic review and 1960 meta-analysis of the management outcome studies. J Thromb Haemost. 2010;8(8):1716-1961 1962 1722. Carrier M, Righini M, Le Gal G. Symptomatic subsegmental pulmonary embolism: what 1963 111. is the next step? J Thromb Haemost. 2012;10(8):1486-1490. 1964 112. Stein PD, Goodman LR, Hull RD, Dalen JE, Matta F. Diagnosis and management of 1965 1966 isolated subsegmental pulmonary embolism: review and assessment of the options. Clin Appl Thromb Hemost. 2012;18(1):20-26. 1967 Costantino G, Norsa AH, Amadori R, et al. Interobserver agreement in the interpretation 1968 113. 1969 of computed tomography in acute pulmonary embolism. Am J Emerg Med. Vol 272009:1109-1111. 1970

97.

1971 114. Lucassen WA, Beenen LF, Buller HR, et al. Concerns in using multi-detector computed 1972 tomography for diagnosing pulmonary embolism in daily practice. A cross-sectional analysis using expert opinion as reference standard. Thromb Res. 2013;131(2):145-149. 1973 1974 115. Stein PD, Fowler SE, Goodman LR, et al. Multidetector computed tomography for acute pulmonary embolism. N Engl J Med. 2006;354(22):2317-2327. 1975 1976 116. Courtney DM, Miller C, Smithline H, Klekowski N, Hogg M, Kline JA. Prospective 1977 multicenter assessment of interobserver agreement for radiologist interpretation of 1978 multidetector computerized tomographic angiography for pulmonary embolism. J Thromb Haemost. 2010;8(3):533-539. 1979 117. Pena E, Kimpton M, Dennie C, Peterson R, G LEG, Carrier M. Difference in 1980 interpretation of computed tomography pulmonary angiography diagnosis of 1981 subsegmental thrombosis in patients with suspected pulmonary embolism. J Thromb 1982 Haemost. 2012;10(3):496-498. 1983 118. Le Gal G, Righini M, Parent F, van Strijen M, Couturaud F. Diagnosis and management 1984 of subsegmental pulmonary embolism. J Thromb Haemost. 2006;4(4):724-731. 1985 1986 119. Le Gal G, Righini M, Sanchez O, et al. A positive compression ultrasonography of the lower limb veins is highly predictive of pulmonary embolism on computed tomography 1987 in suspected patients. Thromb Haemost. 2006;95(6):963-966. 1988 120. den Exter PL, van Es J, Klok FA, et al. Risk profile and clinical outcome of symptomatic 1989 subsegmental acute pulmonary embolism. Blood. 2013;122(7):1144-1149; quiz 1329. 1990 Kearon C, Ginsberg JS, Hirsh J. The role of venous ultrasonography in the diagnosis of 1991 121. suspected deep venous thrombosis and pulmonary embolism. Ann Intern Med. 1992 1993 1998;129(12):1044-1049. Otero R, Uresandi F, Jimenez D, et al. Home treatment in pulmonary embolism. Thromb 122. 1994 1995 Res. 2010;126(1):e1-5. Aujesky D, Roy PM, Verschuren F, et al. Outpatient versus inpatient treatment for 1996 123. patients with acute pulmonary embolism: an international, open-label, randomised, non-1997 inferiority trial. Lancet. 2011;378(9785):41-48. 1998 1999 124. Piran S, Le Gal G, Wells PS, et al. Outpatient treatment of symptomatic pulmonary embolism: a systematic review and meta-analysis. Thromb Res. 2013;132(5):515-519. 2000 Vinson DR, Zehtabchi S, Yealy DM. Can selected patients with newly diagnosed 125. 2001 2002 pulmonary embolism be safely treated without hospitalization? A systematic review. Annals of emergency medicine. 2012;60(5):651-662 e654. 2003 126. Zondag W, Kooiman J, Klok FA, Dekkers OM, Huisman MV. Outpatient versus 2004 inpatient treatment in patients with pulmonary embolism: a meta-analysis. Eur Respir J. 2005 2013;42(1):134-144. 2006 127. Chan CM, Woods C, Shorr AF. The validation and reproducibility of the pulmonary 2007 2008 embolism severity index. J Thromb Haemost. 2010;8(7):1509-1514. Jimenez D, Aujesky D, Moores L, et al. Simplification of the pulmonary embolism 2009 128. severity index for prognostication in patients with acute symptomatic pulmonary 2010 embolism. Arch Intern Med. 2010;170(15):1383-1389. 2011 Moores L, Aujesky D, Jimenez D, et al. Pulmonary Embolism Severity Index and 2012 129. troponin testing for the selection of low-risk patients with acute symptomatic pulmonary 2013 embolism. J Thromb Haemost. 2010;8(3):517-522. 2014

- 2015 130. Ozsu S, Abul Y, Orem A, et al. Predictive value of troponins and simplified pulmonary 2016 embolism severity index in patients with normotensive pulmonary embolism.
 2017 *Multidisciplinary respiratory medicine*. 2013;8(1):34.
- Righini M, Roy PM, Meyer G, Verschuren F, Aujesky D, Le Gal G. The Simplified
 Pulmonary Embolism Severity Index (PESI): validation of a clinical prognostic model for
 pulmonary embolism. *J Thromb Haemost*. 2011;9(10):2115-2117.
- 2021 132. Zondag W, den Exter PL, Crobach MJ, et al. Comparison of two methods for selection of out of hospital treatment in patients with acute pulmonary embolism. *Thromb Haemost*.
 2023 2013;109(1):47-52.
- Jimenez D, Uresandi F, Otero R, et al. Troponin-based risk stratification of patients with
 acute nonmassive pulmonary embolism: systematic review and metaanalysis. *Chest.* 2009;136(4):974-982.
- Lankeit M, Jimenez D, Kostrubiec M, et al. Validation of N-terminal pro-brain natriuretic
 peptide cut-off values for risk stratification of pulmonary embolism. *Eur Respir J*.
 2029 2014;43(6):1669-1677.
- 2030 135. Becattini C, Agnelli G, Germini F, Vedovati MC. Computed tomography to assess risk of
 2031 death in acute pulmonary embolism: a meta-analysis. *Eur Respir J.* 2014;43(6):16782032 1690.
- 2033 136. Coutance G, Cauderlier E, Ehtisham J, Hamon M, Hamon M. The prognostic value of markers of right ventricular dysfunction in pulmonary embolism: a meta-analysis.
 2035 Critical care. 2011;15(2):R103.
- 2036 137. Spirk D, Aujesky D, Husmann M, et al. Cardiac troponin testing and the simplified
 2037 Pulmonary Embolism Severity Index. The SWIss Venous ThromboEmbolism Registry
 2038 (SWIVTER). *Thromb Haemost.* 2011;106(5):978-984.
- 2039 138. Lankeit M, Gomez V, Wagner C, et al. A strategy combining imaging and laboratory
 2040 biomarkers in comparison with a simplified clinical score for risk stratification of patients
 2041 with acute pulmonary embolism. *Chest.* 2012;141(4):916-922.
- 2042 139. Konstantinides SV, Torbicki A, Agnelli G, et al. 2014 ESC guidelines on the diagnosis
 2043 and management of acute pulmonary embolism. *Eur Heart J.* 2014;35(43):3033-3069,
 2044 3069a-3069k.
- 2045 140. Dong B, Jirong Y, Wang Q, Wu T. Thrombolytic treatment for pulmonary embolism.
 2046 *Cochrane Database Syst Rev.* 2006;2; :Art.No: CD004437.pub004432. DOI: 004410.001002/14651858.CD14004437.pub14651852.
- Indications for fibrinolytic therapy in suspected acute myocardial infarction:
 collaborative overview of early mortality and major morbidity results from all
 randomised trials of more than 1000 patients. Fibrinolytic Therapy Trialists' (FTT)
 Collaborative Group. *Lancet.* 1994;343(8893):311-322.
- 142. Kline JA, Nordenholz KE, Courtney DM, et al. Treatment of submassive pulmonary embolism with tenecteplase or placebo: cardiopulmonary outcomes at 3 months: multicenter double-blind, placebo-controlled randomized trial. *J Thromb Haemost*. 2055 2014;12(4):459-468.
- 2056 143. Sharifi M, Bay C, Skrocki L, Rahimi F, Mehdipour M. Moderate Pulmonary Embolism Treated With Thrombolysis (from the "MOPETT" Trial). *The American Journal of Cardiology*. 2013;111(2):273-277.
- 2059 144. Meyer G, Vicaut E, Danays T, et al. Fibrinolysis for patients with intermediate-risk
 2060 pulmonary embolism. *N Engl J Med.* 2014;370(15):1402-1411.

2061	145.	Wang TF, Squizzato A, Dentali F, Ageno W. The role of thrombolytic therapy in
2062		pulmonary embolism. <i>Blood</i> . 2015;125(14):2191-2199.
2063	146.	Marti C, John G, Konstantinides S, et al. Systemic thrombolytic therapy for acute
2064		pulmonary embolism: a systematic review and meta-analysis. Eur Heart J.
2065		2015;36(10):605-614.
2066	147.	Nakamura S, Takano H, Kubota Y, Asai K, Shimizu W. Impact of the efficacy of
2067		thrombolytic therapy on the mortality of patients with acute submassive pulmonary
2068		embolism: a meta-analysis. J Thromb Haemost. 2014;12(7):1086-1095.
2069	148.	Chatterjee S, Chakraborty A, Weinberg I, et al. Thrombolysis for pulmonary embolism
2070		and risk of all-cause mortality, major bleeding, and intracranial hemorrhage: a meta-
2071		analysis. JAMA. 2014;311(23):2414-2421.
2072	149.	Riera-Mestre A, Becattini C, Giustozzi M, Agnelli G. Thrombolysis in hemodynamically
2073		stable patients with acute pulmonary embolism: a meta-analysis. Thromb Res.
2074		2014;134(6):1265-1271.
2075	150.	Aujesky D, Obrosky DS, Stone RA, et al. Derivation and validation of a prognostic
2076		model for pulmonary embolism. Am J Respir. Crit Care Med. 2005;172:1041-1046.
2077	151.	Kuo WT, Gould MK, Louie JD, Rosenberg JK, Sze DY, Hofmann LV. Catheter-directed
2078		therapy for the treatment of massive pulmonary embolism: systematic review and meta-
2079		analysis of modern techniques. J Vasc Interv Radiol. 2009;20(11):1431-1440.
2080	152.	Kuo WT. Endovascular therapy for acute pulmonary embolism. J Vasc Interv Radiol.
2081		2012;23(2):167-179 e164; quiz 179.
2082	153.	Avgerinos ED, Chaer RA. Catheter-directed interventions for acute pulmonary embolism.
2083		Journal of Vascular Surgery. 2015;61(2):559-565.
2084	154.	Jaff MR, McMurtry MS, Archer SL, et al. Management of massive and submassive
2085		pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic
2086		pulmonary hypertension: a scientific statement from the American Heart Association.
2087		Circulation. 2011;123(16):1788-1830.
2088	155.	Kucher N, Boekstegers P, Muller OJ, et al. Randomized, controlled trial of ultrasound-
2089		assisted catheter-directed thrombolysis for acute intermediate-risk pulmonary embolism.
2090		Circulation. 2014;129(4):479-486.
2091	156.	Kuo WT, Banerjee A, Kim PS, et al. Pulmonary Embolism Response to Fragmentation,
2092		Embolectomy, and Catheter Thrombolysis (PERFECT): Initial Results from a
2093		Prospective Multicenter Registry. Chest. 2015.
2094	157.	Piazza G, Hohlfelder B, Jaff MR, et al. A Prospective, Single-Arm, Multicenter Trial of
2095		Ultrasound-Facilitated, Catheter-Directed, Low-Dose Fibrinolysis for Acute Massive and
2096		Submassive Pulmonary Embolism: The SEATTLE II Study. JACC Cardiovasc Interv.
2097		2015;8(10):1382-1392.
2098	158.	Verstraete M, Miller GAH, Bounameaux H, et al. Intravenous and intrapulmonary
2099		recombinant tissue-type plasminogen activator in the treatment of acute massive
2100		pulmonary embolism. Circulation. 1988;77(2):353-360.
2101	159.	Pepke-Zaba J, Delcroix M, Lang I, et al. Chronic thromboembolic pulmonary
2102		hypertension (CTEPH): results from an international prospective registry. Circulation.
2103		2011;124(18):1973-1981.
2104	160.	Fedullo P, Kerr KM, Kim NH, Auger WR. Chronic thromboembolic pulmonary
2105		hypertension. Am J Respir Crit Care Med. 2011;183(12):1605-1613.

2106	161.	Mayer E, Jenkins D, Lindner J, et al. Surgical management and outcome of patients with
2107		chronic thromboembolic pulmonary hypertension: results from an international
2108		prospective registry. The Journal of thoracic and cardiovascular surgery.
2109		2011;141(3):702-710.
2110	162.	Hayes, Inc. Pulmonary thromboendarterectomy for treatment of pulmonary hypertension
2111		(Structured abstract). <i>Health Technology Assessment Database</i> . 2012(1).
2112	163.	Rahnavardi M, Yan TD, Cao C, Vallely MP, Bannon PG, Wilson MK. Pulmonary
2113		thromboendarterectomy for chronic thromboembolic pulmonary hypertension: a
2114		systematic review (Structured abstract). Annals of Thoracic and Cardiovascular Surgery.
2115		2011;17(5):435-445.
2116	164.	Ghofrani HA, D'Armini AM, Grimminger F, et al. Riociguat for the treatment of chronic
2117		thromboembolic pulmonary hypertension. N Engl J Med. 2013;369(4):319-329.
2118	165.	Deano RC, Glassner-Kolmin C, Rubenfire M, et al. Referral of patients with pulmonary
2119		hypertension diagnoses to tertiary pulmonary hypertension centers: the multicenter
2120		RePHerral study. JAMA internal medicine. 2013;173(10):887-893.
2121	166.	Andreassen AK, Ragnarsson A, Gude E, Geiran O, Andersen R. Balloon pulmonary
2122		angioplasty in patients with inoperable chronic thromboembolic pulmonary hypertension.
2123		Heart (British Cardiac Society). 2013;99(19):1415-1420.
2124	167.	Taichman DB, Ornelas J, Chung L, et al. Pharmacologic therapy for pulmonary arterial
2125		hypertension in adults: CHEST guideline and expert panel report. Chest.
2126		2014;146(2):449-475.
2127	168.	Kucher N. Clinical practice. Deep-vein thrombosis of the upper extremities. N Engl J
2128		Med. 2011;364(9):861-869.
2129	169.	Naeem M, Soares G, Ahn S, Murphy TP. Paget-Schroetter syndrome: A review and
2130		Algorithm (WASPS-IR). <i>Phlebology</i> . 2015.
2131	170.	Heit JA, Mohr DN, Silverstein MD, Petterson TM, O'Fallon WM, Melton LJ, III.
2132		Predictors of recurrence after deep vein thrombosis and pulmonary embolism: a
2133		population-based cohort study. Archives of Internal Medicine. 2000;160(6):761-768.
2134	171.	Lee AY, Levine MN, Baker RI, et al. Low-molecular-weight heparin versus a coumarin
2135		for the prevention of recurrent venous thromboembolism in patients with cancer.
2136		N.Engl.J Med. 2003;349(2):146-153.
2137	172.	Carrier M, Le Gal G, Cho R, Tierney S, Rodger M, Lee AY. Dose escalation of low
2138		molecular weight heparin to manage recurrent venous thromboembolic events despite
2139		systemic anticoagulation in cancer patients. J Thromb Haemost. 2009;7(5):760-765.
2140	173.	Farge D, Debourdeau P, Beckers M, et al. International clinical practice guidelines for the
2141		treatment and prophylaxis of venous thromboembolism in patients with cancer. J Thromb
2142		Haemost. 2013;11(1):56-70.
24.42		
2143		

Outcomes	No of Participants (st	tudies) Follow up	Quality of the evidence (GRADE)	Relative effect (95%	Anticipa	ated absolute effects
				CI) ²	Risk with VKA	Risk difference with LMWH (95% CI)
All Cause	3396		$\oplus \oplus \oplus \Theta$	RR 1.01	Non-Ca	ncer ³
Mortality	(9 studies) 6 months		MODERATE ⁴ due to risk of bias	(0.89 to 1.14)	17 per 1000	0 more per 1000 (from 2 fewer to 2 more)
					Non-Me	etastatic Cancer ³
				42 per 1000	0 more per 1000 (from 5 fewer to 6 more)	
				Metastatic Cancer ³		
					253 per 1000	3 more per 1000 (from 28 fewer to 35 more)
Recurrent	3627		$\oplus \oplus \oplus \Theta$	RR 0.65	Low ⁵	
Recurrent VTE	(9 studies) 6 months		$\begin{array}{c} \mathbf{\Theta} \mathbf{\Theta} \mathbf{\Theta} \mathbf{\Theta} \\ \mathbf{MODERATE}^{6} \\ \text{due to risk of bias} \end{array}$	(0.51 to 0.83)	30 per 1000	11 fewer per 1000 (from 5 fewer to 15 fewer)
		AF		Moderate ⁵		
				80 per 1000	28 fewer per 1000 (from 14 fewer to 39 fewer)	
				High ⁵	10 37 iewei)	
					200 per 1000	70 fewer per 1000 (from 34 fewer to 98 fewer)
Major	3637		$\Theta \oplus \Theta \Theta$	RR 0.86	Low ⁷	
bleeding	(9 studies) 6 months		MODERATE ^{8,9} due to imprecision	(0.56 to 1.32)	20 per 1000	3 fewer per 1000 (from 9 fewer to 6 more)
					High ⁷	
	Å				80 per 1000	11 fewer per 1000 (from 35 fewer to 26 more)

Table 1: Summary of Findings - LMWH vs VKA for long term treatment of VTE ¹

*The basis for the assumed risk (e.g. the median control group risk across studies) is provided in footnotes. The corresponding risk (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio;

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

¹ The initial parenteral anticoagulation was similar in both arms for all except one study (Hull et al.²) in which patients randomized to LMWH received initially the same LWMH whereas patients randomized to VKA received initially UFH

² The relative effect (RR; 95% CI) of LMWH versus VKA was assessed, and compared, in the subgroup of trials that enrolled patients without (Hull et al. (LITE)², Lopez-Beret et al.⁶) and with (Deitcher et al. (ONCENOX)¹, Hull et al. (LITE)², Lee et al. (CLOT)⁴, Lee et al. (CATCH)⁹, Lopez-Beret et al.⁶, Meyer et al.⁷) cancer: Recurrent VTE: cancer RR 0.59 (0.44 to 0.78) vs. no cancer RR 0.99 (0.46

to 2.13); P=0.21 for subgroup difference. Major Bleeding: cancer RR 0.96 (0.65 to 1.42) vs. no cancer RR 0.43 (0.17 to 1.17); P=0.14 for subgroup difference. All Cause Mortality: cancer RR 1.00 (0.88 to 1.33) vs. no cancer RR 1.85 (0.59 to 5.77); P=0.29 for subgroup difference.

³ Low corresponds to patients without cancer and patients with non-metastatic cancer. High corresponds to patients with metastatic cancer. These control event rates were derived from the RIETE registry (an ongoing prospective registry of consecutive patients with acute VTE) (Prandoni et al.¹⁰)

⁴ One study did not report deaths, which is unusual and could reflect selective reporting of outcomes.

⁵ Risk of recurrent VTE: Low corresponds to patients without cancer (3% estimate taken from recent large RCTs of acute treatment), intermediate to patients with local or recently resected cancer (appears to be consistent with Prandoni [particularly if low risk is increased to 4%]), and high to patients with locally advanced or distant metastatic cancer. (Prandoni et al.¹¹)

⁶ None of the studies was blinded while the diagnosis of recurrent VTE has a subjective component and there could be a lower threshold for diagnosis of recurrent VTE in VKA-treated patients as switching the treatment of such patients to LMWH is widely practiced. At the same time, there is reluctance to diagnose recurrent VTE in patients who are already on LMWH as there is no attractive alternative treatment option.

⁷ Risk of bleeding: Low corresponds to patients without risk factor for bleeding (i.e., > 75 years, cancer, metastatic disease; chronic renal or hepatic failure; platelet count <80,0000; requires antiplatelet therapy; history of bleeding without a reversible cause). (Prandoni et al.¹⁰, Byeth et al.¹²)

⁸ Confidence interval includes both no effect and harm with LMWH

⁹ 95% confidence intervals for the risk ratio for major bleeding includes a potentially clinically important increase or decrease with LMWH, and may also vary with the dose of LMWH used during the extended phase of therapy

Outcomes	No of Participants (studies) Follow	Quality of the evidence (GRADE)	Relative effect (95%	Anticipa	Anticipated absolute effects	
	up		CI)	Risk with VKA	Risk difference with Dabigatran (95% CI)	
All Cause Mortality	5107 (2 studies)		RR 1.0 (0.67 to 1.50) ³	18 per 1000 ³	0 fewer per 1000 (from 6 fewer to 9 more)	
Recurrent VTE	5107 (2 studies)	$\begin{array}{c} \bigoplus \bigoplus \bigoplus \bigcirc \\ \mathbf{MODERATE}^4 \\ \text{due to imprecision} \end{array}$	RR 1.12 $(0.77 \text{ to } 1.62)^3$	22 per 1000 ³	3 more per 1000 (from 5 fewer to 13 more)	
Major Bleeding	5107 (2 studies)	$\begin{array}{c} \bigoplus \bigoplus \bigoplus \bigoplus \\ \textbf{MODERATE}^4 \\ \text{due to imprecision} \end{array}$	RR 0.73 $(0.48 \text{ to } 1.10)^3$	20 per 1000³	5 fewer per 1000 (from 10 fewer to 2 more)	

Table 2: Summary of Findings - Dabigatran vs VKA for long-term treatment of VTE ^{1,2}

*The basis for the **assumed risk** (e.g. the median control group risk across studies) is provided in footnotes. The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio;

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

¹ Patients with acute VTE treated initially with low-molecular-weight or unfractionated heparin

² Dabigatran 150 mg twice daily vs. warfarin

³ Pooled analysis of Schulman et al. (Re-Cover I)¹⁴ and Schulman et al. (Re-Cover II)¹³ performed by Schulman et al.¹³

⁴ CI includes values suggesting no effect and values suggesting either benefit or harm

Outcomes	No of Participants (studies) Follow	Quality of the evidence (GRADE)	Relative effect (95%	Anticipated	Anticipated absolute effects	
	up		CI)	Risk with LMWH and VKA	Risk difference with Rivaroxaban (95% CI)	
All Cause Mortality	8281 (2 studies) 3 months	$\begin{array}{c} \bigoplus \bigoplus \bigoplus \bigoplus \\ \textbf{MODERATE}^4 \\ \text{due to imprecision} \end{array}$	RR 0.97 (0.73 to 1.27)	24 per 1000 ³	1 fewer per 1000 (from 6 fewer to 6 more)	
Recurrent VTE	8281 (2 studies) 3 months	$\begin{array}{c} \bigoplus \bigoplus \bigoplus \bigoplus \\ \textbf{MODERATE}^4 \\ \text{due to imprecision} \end{array}$	RR 0.90 (0.68 to 1.2)	23 per 1000 ³	2 fewer per 1000 (from 7 fewer to 5 more)	
Major Bleeding	8246 (2 studies) 3 months	⊕⊕⊕ HIGH	RR 0.55 (0.38 to 0.81)	17 per 1000 ³	8 fewer per 1000 (from 3 fewer to 11 fewer)	

Table 3: Summary of Findings - Rivaroxaban vs LMWH and VKA for acute and long-term treatment of VTE^{1,2}

*The basis for the assumed risk (e.g. the median control group risk across studies) is provided in footnotes. The corresponding risk (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: Confidence interval; **RR:** Risk ratio;

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

Included patients had acute, symptomatic, objectively verified proximal DVT of the legs or PE (unprovoked 73%; cancer 5%;

previous VTE 19%)

² Rivaroxaban 20 mg daily for 6 or 12 month after initial long-term therapy

³ Pooled analysis of Bauersachs et al. (EINSTEIN-DVT)¹⁶ and Buller et al. (EINSTEIN-PE)¹⁷ performed by Prins et al.¹⁵ ⁴ CI includes values suggesting no effect and values suggesting either benefit or harm

Outcomes	No of Participants (studies) Follow	Quality of the evidence (GRADE)	Relative effect (95% CI)	Anticipated	Anticipated absolute effects	
	up			Risk with LMWH and VKA	Risk difference with Apixaban (95% CI)	
All Cause Mortality	5365 (1 study)	$\begin{array}{c} \bigoplus \bigoplus \bigoplus \bigoplus \\ \textbf{MODERATE}^3 \\ \text{due to imprecision} \end{array}$	RR 0.79 (0.53 to 1.19)	19 per 1000	4 fewer per 1000 (from 9 fewer to 4 more)	
Recurrent VTE	5244 (1 study)	$\begin{array}{c} \bigoplus \bigoplus \bigoplus \bigoplus \\ \textbf{MODERATE}^{3} \\ \text{due to imprecision} \end{array}$	RR 0.84 (0.6 to 1.18)	27 per 1000	4 fewer per 1000 (from 11 fewer to 5 more)	
Major Bleeding	5365 (1 study)	⊕⊕⊕⊕ HIGH	RR 0.31 (0.17 to 0.55)	18 per 1000	13 fewer per 1000 (from 8 fewer to 15 fewer)	

Table 4: Summary of Findings - Apixaban vs LMWH and VKA for acute and long-term treatment of VTE ^{1,2} Biblic superhyperative A = 0.01 M

*The basis for the **assumed risk** (e.g. the median control group risk across studies) is provided in footnotes. The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: Confidence interval; **RR:** Risk ratio;

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

¹ Apixaban 10 mg twice daily for 7 days, followed by 5 mg twice daily for 6 months

² Subcutaneous enoxaparin, followed by warfarin

³ CI includes values suggesting no effect and values suggesting either benefit or harm

Outcomes	No of Participants (studies) Follow	Quality of the evidence (GRADE)	Relative effect (95% CI)	Anticipated absolute effects	
	up			Risk with VKA	Risk difference with Edoxaban (95% CI)
All Cause	8240	$\oplus \oplus \oplus \Theta$	RR 1.05	31 per	2 more per
Mortality	(1 study)	MODERATE ⁴	(0.82 to 1.33)	1000 ³	1000
	-	due to imprecision			(from 6 fewer
		-			to 10 more)
Recurrent	8240	$\oplus \oplus \oplus \Theta$	RR 0.83	35 per	6 fewer per
VTE	(1 study)	MODERATE ^{3,4}	(0.57 to 1.21)	1000	1000
		due to imprecision			(from 15 fewer
		I			to 7 more)
Major	8240	$\oplus \oplus \oplus \ominus$	RR 0.85	16 per	2 fewer per
Bleeding	(1 study)	MODERATE ⁴	(0.6 to 1.21)	1000	1000
8	· · · ·	due to imprecision	. ,		(from 6 fewer
		1			to 3 more)

Table 5: Summary of Findings - Edoxaban vs VKA for acute and long-term treatment of VTE ^{1,2}

*The basis for the **assumed risk** (e.g. the median control group risk across studies) is provided in footnotes. The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio;

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

¹ Patients with acute VTE who had initially received heparin

 2 Edoxaban 60 mg once daily, or 30 mg once daily if patients with creatinine clearance of 30 to 50 ml per minute or a body weight below 60 kg

³ Death, with PE not ruled out

⁴ CI includes values suggesting no effect and values suggesting either benefit or harm

Factor	Preferred anticoagulant	Qualifying remarks
Cancer	LMWH	More so if: just diagnosed, extensive VTE, metastatic cancer, very symptomatic; vomiting; on cancer chemotherapy.
Parenteral therapy to be avoided	Rivaroxaban; apixaban	VKA, dabigatran and edoxaban require initial parenteral therapy.
Once daily oral therapy preferred	Rivaroxaban; edoxaban; VKA	
Liver disease and coagulopathy	LMWH	NOACs contraindicated if INR raised due to liver disease; VKA difficult to control and INR may not reflect antithrombotic effect.
Renal disease and creatinine clearance <30 ml/min	VKA	NOACs and LMWH contraindicated with severe renal impairment. Dosing of NOACs with levels of renal impairment differ with the NOAC and among jurisdictions.
Coronary artery disease	VKA, rivaroxaban, apixaban, edoxaban	Coronary artery events appear to occur more often with dabigatran than with VKA. This has not been seen with the other NOACs, and they have demonstrated efficacy for coronary artery disease. Antiplatelet therapy should be avoided if possible in patients on anticoagulants because of increased bleeding.
Dyspepsia or history of gastrointestinal bleeding	VKA, apixaban,	Dabigatran increased dyspepsia. Dabigatran, rivaroxaban and edoxaban may be associated with more gastrointestinal bleeding than VKA.
Poor compliance	VKA	INR monitoring can help to detect problems. However, some patients may be more compliant with a NOAC because it is less complex.
Thrombolytic therapy use	Unfractionated heparin infusion	Greater experience with its use in patients treated with thrombolytic therapy
Reversal agent needed	VKA, unfractionated heparin	
Pregnancy or pregnancy risk	LMWH	Potential for other agents to cross the placenta
Cost, coverage, licensing	Varies among regions and with individual circumstances	

Table 6: Factors that may influence which anticoagulant is chosen for initial and long-term treatment of VTE

CRACK C

Bibliography	Schulman et al. (REMEDY) ²⁰				
Outcomes	No of Participants (studies) Follow	Quality of the evidence (GRADE)	Relative effect (95% CI)	Anticipated absolute effects	
	up			Risk with VKA	Risk difference with Dabigatran (95% CI)
All Cause Mortality	2856 (1 study)		RR 0.89 (0.47 to 1.71)	13 per 1000	1 fewer per 1000 (from 7 fewer to 9 more)
Recurrent VTE	2856 (1 study)		RR 1.44 (0.79 to 2.62)	13 per 1000	6 more per 1000 (from 3 fewer to 20 more)
Major Bleeding	2856 (1 study)	$\begin{array}{c} \bigoplus \bigoplus \bigoplus \bigoplus \\ \textbf{MODERATE}^{5,6} \\ \text{due to imprecision} \end{array}$	RR 0.52 (0.27 to 1.01)	18 per 1000	8 fewer per 1000 (from 13 fewer to 0 more)

Table 7: Summary of Findings - Dabigatran vs VKA for extended treatment of VTE ^{1,2,3,4}

*The basis for the **assumed risk** (e.g. the median control group risk across studies) is provided in footnotes. The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio;

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

¹ Included patients had acute, symptomatic, objectively verified proximal DVT of the legs or PE

² Dabigatran 150 mg twice daily taken orally for 6 months after an initial treatment with LMWH or IV UFH

³ Warfarin adjusted to achieve an INR of 2.0 to 3.0 for 6 months after an initial treatment with LMWH or IV UFH

⁴ Active-Control study outcomes used from Schulman et al. (REMEDY)²⁰

⁵ Allocation was concealed. Patients, providers, data collectors and outcome adjudicators were blinded. Modified ITT analysis. 1.1% loss to follow-up. Not stopped early for benefit.

⁶CI includes values suggesting no effect and values suggesting either benefit or harm

⁷ Primary end point was composite of recurrent or fatal VTE or unexplained death

Outcomes	No of Participants (studies) Follow	Quality of the evidence (GRADE)	Relative effect (95% CI)	Anticipated absolute effects	
	up			Risk with Placebo	Risk difference with Dabigatran (95% CI)
All Cause Mortality	1343 (1 study)	$\begin{array}{c} \bigoplus \bigoplus \bigoplus \bigoplus \\ \textbf{MODERATE}^4 \\ \text{due to imprecision} \end{array}$	Not estimable ⁵	-	-
Recurrent VTE	1343 (1 study)	⊕⊕⊕⊕ HIGH	RR 0.08 (0.02 to 0.25)	56 per 1000	51 fewer per 1000 (from 42 fewer to 55 fewer)
Major Bleeding	1343 (1 study)	$\begin{array}{c} \bigoplus \bigoplus \bigoplus \bigoplus \\ \textbf{MODERATE}^4 \\ \text{due to imprecision} \end{array}$	Not estimable ⁶	-	-

Table 8: Summary of Findings - Dabigatran vs Placebo for extended treatment of VTE 1.2

*The basis for the assumed risk (e.g. the median control group risk across studies) is provided in footnotes. The corresponding risk (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio;

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

¹ Patients with VTE who had completed at least 3 initial months of therapy

² Dabigatran 150 mg twice daily

³ Placebo-Control study outcomes used from Schulman et al. (RESONATE)²⁰

⁴ Event rate low in a large sample size

⁵ Event rate with Dabigatran was 0/681 (0%); event rate with placebo was 2/662 (0.3%); anticipated absolute effect - risk difference with Dabigatran is 3 fewer per 1000 (from 11 fewer to 3 more)

⁶ Event rate with Dabigatran was 2/681 (0.3%); event rate with placebo was 0/662 (0%); anticipated absolute effect - risk difference with Dabigatran is 3 more per 1000 (from 3 fewer to 11 more)

Outcomes	No of Participants (studies) Follow	Quality of theowevidence (GRADE)	Relative effect (95% CI)	Anticipated absolute effects	
	up			Risk with Placebo	Risk difference with Rivaroxaban (95% CI)
All Cause Mortality	1196 (1 study)	$\begin{array}{c} \bigoplus \bigoplus \bigoplus \bigoplus \bigoplus \\ \mathbf{MODERATE}^{3} \\ \text{due to imprecision} \end{array}$	RR 0.49 (0.04 to 5.43)	3 per 1000	2 fewer per 1000 (from 3 fewer to 15 more)
Recurrent VTE	1196 (1 study)	⊕⊕⊕⊕ HIGH	RR 0.19 (0.09 to 0.4)	71 per 1000	57 fewer per 1000 (from 42 fewer to 64 fewer)
Major Bleeding	1188 (1 study)	⊕⊕⊕⊝ MODERATE due to risk of bias	Not estimable ⁴	-	-

Table 9: Summary of Findings - Rivaroxaban vs Placebo for extended treatment of VTE ^{1,2}

*The basis for the **assumed risk** (e.g. the median control group risk across studies) is provided in footnotes. The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio;

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

¹ Patients who had completed 6 to 12 months of treatment for VTE

² Rivaroxaban 20mg daily or placebo, specific to the continued treatment study

³ CI includes values suggesting no effect and values suggesting either benefit or harm

⁴ Event rate with Rivaroxaban was 4/598 (0.67%); event rate with placebo was 0/590 (0%); anticipated absolute effect - risk difference with Rivaroxaban is 4 more per 1000 (from 1 less to 17 more)

Outcomes	No of Participants (studies) Follow	Quality of the evidence (GRADE)	Relative effect (95% CI)	Anticipated absolute effects	
	up			Risk with Placebo	Risk difference with Apixaban (95% CI)
All Cause Mortality	1669 (1 study) 12 months		RR 0.49 (0.2 to 1.22)	17 per 1000	9 fewer per 1000 (from 14 fewer to 4 more)
Recurrent VTE	1669 (1 study) 12 months	⊕⊕⊕⊕ HIGH	RR 0.19 (0.11 to 0.33)	88 per 1000	71 fewer per 1000 (from 59 fewer to 78 fewer)
Major Bleeding	1669 (1 study) 12 months	$\begin{array}{c} \bigoplus \bigoplus \bigoplus \bigoplus \\ \textbf{MODERATE}^{3,4} \\ \text{due to imprecision} \end{array}$	RR 0.49 (0.09 to 2.64)	5 per 1000	2 fewer per 1000 (from 4 fewer to 8 more)

Table 10: Summary of Findings - Apixaban vs Placebo for extended treatment of VTE ^{1,2}

*The basis for the **assumed risk** (e.g. the median control group risk across studies) is provided in footnotes. The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio;

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

¹ Patients with VTE who had completed 6 to 12 months of anticoagulation therapy

² Apixaban 2.5 mg twice-daily dose vs. placebo

³ Significantly wide CIs, including appreciable benefit / harm and no effect line

⁴ Low number of events

	Risk factors ^A		
Age >65 years ²²⁻³¹ Age >75 years ^{22-26,28,30,32-40} Previous bleeding ^{23,29-31,36,39,42} Cancer ^{25,29,3,3,64,3} Metastatic cancer ^{11,42} Renal failure ^{23,29,31,34,36,39,44} Liver failure ^{24,26,3,3,4} Thrombocytopenia ^{33,42} Previous stroke ^{23,30,33,45} Diabetes ^{23,24,34,38,40} Anaemia ^{23,26,33,36,40} Antiplatelet therapy ^{24,33,34,40,46} Antiplatelet therapy ^{24,33,34,40,46} Poor anticoagulant control ^{27,34,41} Co-morbidity and reduced functional capac Recent surgery ^{26,47 B} Frequent falls ³³ Alcohol abuse ^{29,30,33,40} Non-steroidal anti-inflammatory drug ⁴⁸	city ^{29,34,42}		S.S.S.
	Categorization of Risk of	Bleeding ^C	
		nated absolute risk of major b	leeding
	Low risk ^D (0 risk factors)	Moderate risk ^D (1 risk factor)	High risk ^D (≥2 risk factors)
Anticoagulation 0-3 months ^E			
baseline risk (%) increased risk (%) total risk (%)	0.6 1.0 1.6 ^F	1.2 2.0 3.2	4.8 8.0 12.8 ^G
And			
Anticoagulation after first 3 months ⁵	0.2 ^H	0.6	>25
baseline risk (% per yr)	0.3 ^H	0.6 1.0	≥ 2.5
increased risk (% per yr) total risk (% per yr)	0.5 0.8 ¹	1.0 1.6 ^I	≥ 4.0 ≥ 6.5

Table 11: Risk factors for bleeding with anticoagulant therapy and estimated risk of major bleeding in low, moderate and high risk categories*

*From AT9. Since AT9: References for bleeding with individual factors have been added ^{31,44,48}; non-steroidal anti-inflammatory drug has been added as a risk factor; a systematic review has described the risk in VTE trial patients who were randomized to no antithrombotic therapy ⁴⁹; and a number of recent publications have compared clinical prediction rules for bleeding in various populations ^{31,50,54}.

A. Most studies assessed risk factors for bleeding in patients who were on VKA therapy. The risk of bleeding with different anticoagulants is not addressed in this table. The increase in bleeding associated with a risk factor will vary with: 1) severity of the risk factor (e.g. location and extent of metastatic disease; platelet count); 2) temporal relationships (e.g. interval from surgery or a previous bleeding episode³⁵; and 3) how effectively a previous cause of bleeding was corrected (e.g. upper gastrointestinal bleeding). B. Important for parenteral anticoagulation (e.g. first 10 days) but less important for long-term or extended anticoagulation.

C. Although there is evidence that risk of bleeding increases with the prevalence of risk factors^{25,26,30,31,33,34,36,39,40,42,55,56}, the categorization scheme suggested above has not been validated. Furthermore, a single risk factor, when severe, will result in a high risk of bleeding (e.g. major surgery within the past 2 days; severe thrombocytopenia).

D. Compared to low risk patients, moderate risk patients are assumed to have a 2-fold risk and high-risk patients are assumed to have an 8-fold risk of major bleeding^{23,25,26,33,34,36,42,57}.

E. We estimate that anticoagulation is associated with a 2.6-fold increase in major bleeding based on comparison of extended anticoagulation (Table 6). The relative risk of major bleeding during the first 3 month of therapy may be greater that during extended VKA therapy because: 1) the intensity of anticoagulation with initial parenteral therapy may be greater that with VKA therapy; 2) anticoagulant control will be less stable during the first 3 months; and 3) predispositions to anticoagulant-induced bleeding may be uncovered during the first 3 months of therapy^{27,36,41}. However, studies of patients with acute coronary syndromes do not suggest a higher than 2.6 relative risk of major bleeding with parenteral anticoagulation (e.g. UFH or LMWH) compared to control^{58,59}.

F. 1.6% corresponds to the average of major bleeding with initial UFH or LMWH therapy followed by VKA therapy (Table 7). We estimated baseline risk by assuming a 2.6 relative risk of major bleeding with anticoagulation (footnote 1).

G. Consistent with frequency of major bleeding observed by Hull in "high risk" patients⁴⁷.

H. Our estimated baseline risk of major bleeding for low risk patients (and adjusted up for moderate and high risk groups as per footnote D).

I. Consistent with frequency of major bleeding during prospective studies of extended anticoagulation for VTE^{27,57,60-62} (Table 6).

Table 12: Summary of Findings - Six, Twelve or Twenty-four Months vs Three or Six Months as minimum duration of anticoagulation for VTE 1,2

Bibliography: Campbell et al.⁶³, Pinede et al. (DOTAVK)⁶⁴, Agnelli et al. (WODIT-PE Provoked and Unprovoked)⁶⁵, Agnelli et al. (WODIT-DVT)⁶⁶, Couturand et al. (PADIS-PE)⁶⁷, Siragusa et al. (DACUS)⁶⁸, Eischer et al.(AUREC-FVIII)⁶⁹

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% CI)	Anticipated absolute effects Risk with Risk No difference	
				extended	with Extended (95% CI)
Mortality	1736 (7 studies) 1-3 years	⊕⊕⊕⊖ MODERATE ^{3,4,5} due to imprecision	RR 1.39 (0.91 to 2.12)	41 per 1000	16 more per 1000 (from 4 fewer to 46 more)
Recurrent VTE	2466 (8 studies) 1-3 years	$\begin{array}{c} \bigoplus \bigoplus \bigoplus \bigcirc \\ \textbf{MODERATE}^{3,4,5} \\ \text{due to imprecision} \end{array}$	RR 0.88 (0.71 to 1.09)	128 per 1000	18 fewer per 1000 (from 40 fewer to 8 more)
Major Bleeding	2466 (8 studies) 1-3 years	⊕⊕⊕⊖ MODERATE ^{3,4,5} due to imprecision	RR 1.78 (0.95 to 3.34)	12 per 1000	9 more per 1000 (from 1 fewer to 27 more)

*The basis for the **assumed risk** (e.g. the median control group risk across studies) is provided in footnotes. The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio;

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

¹ Studies vary in follow-up duration (10 months to 3 years) and in duration of time-limited VKA (3 to 6 months).

² VKA as NOACs are not included

³ Timing of randomization relative to the start of treatment and length of treatment varied across studies: Pinede et al.⁶⁴ and Campbell et al.⁶³ randomized at diagnosis; and Agnelli et al.⁶⁵, Eischer et al.⁶⁹ and Couturaud et al.⁶⁷ randomized after the initial 3 mo (Agnelli et al.⁶⁵) or 6 mo (Eischer et al.⁶⁹ Couturaud et al.⁶⁷) of treatment to stop or continued treatment. The longer duration of treatment was 6 mo in Agnelli et al. (provoked PE)⁶⁵ and Pinede et al.⁶⁴, 12 months in Agnelli et al. (unprovoked DVT; unprovoked PE)^{65,66}, 24 months in Couturaud et al.⁶⁷, and 30 months in Eischer et al.⁶⁹ Generally, study design was strong. No study stopped early for benefit; three stopped early because of slow recruitment (Campbell et al.⁶³, Pinede et al.⁶⁴, Eischer et al.⁶⁹) and one because of lack of benefit (Agnelli et al.⁶⁵). In one study (Campbell et al.⁶³), 20% of VTE outcomes were not objectively confirmed. Patients and caregivers were blinded in Couturaud et al.⁶⁷, but none of the other studies. Adjudicators of outcomes were blinded in all but one study (Campbell et al.⁶³). All studies used effective randomization concealment, intention-to-treat analysis, and a low unexplained drop-out frequency.⁴ Study populations varied across studies: Pinede et al.⁶⁴ enrolled provoked and unprovoked (3 vs 12 mo); Agnelli et al.⁶⁵ had separate randomizations for provoked PE (3 vs 6 mo) and unprovoked (3 vs 12 mo); Agnelli et al.⁶⁶ enrolled unprovoked proximal DVT; Eischer et al.⁶⁹ enrolled unprovoked PE.⁵ for some and period and values suggesting no effect and values suggesting either benefit or harm.

Outcomes	No of Participants (studies) Follow	Quality of the evidence (GRADE)	Relative effect (95% CI)	Anticipated absolute effects	
	up			Risk with Control	Risk difference with Aspirin (95% CI)
All Cause	1224	$\oplus \oplus \ominus \ominus$	HR 0.82	Moderate	risk population ¹
Mortality	(2 studies)		$(0.45 \text{ to } 1.52)^2$	5 per	1 fewer per
	up to 4 years	due to imprecision		1000	1000
					(from 3 fewer
					to 3 more)
Recurrent	1224	$\oplus \oplus \oplus \Theta$	HR 0.65	184 per	60 fewer per
VTE	(2 studies)	MODERATE ^{3,5}	$(0.49 \text{ to } 0.86)^2$	1000	1000
	up to 4 years	due to imprecision			(from 24 fewer
		-			to 89 fewer)
Major	1224	$\oplus \oplus \oplus \Theta$	HR 1.31	12 per	4 more per
Bleeding	(2 studies)	MODERATE ^{3,4}	$(0.48 \text{ to } 3.53)^2$	1000	1000
0	up to 4 years	due to imprecision			(from 6 fewer
	1 V	*			to 29 more)

Table 13: Summary of Findings - Aspirin vs Placebo for extended treatment of VTE

*The basis for the **assumed risk** (e.g. the median control group risk across studies) is provided in footnotes. The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: Confidence interval; HR: Hazard ratio;

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

¹ Estimate taken from Douketis et al.⁷¹

² Estimate based on Simes et al. (INSPIRE)⁷⁰ of synthesis of Brighton et al. (ASPIRE)⁷² and Becattini et al. (WARFASA)⁷³

³ Both of the included studies were stopped early with knowledge of overall rates of VTE. Decision to stop was not made with unblinded data. Only 1/3 of the intended patients in the study

⁴ CI includes values suggesting no effect and values suggesting either benefit or harm

⁵ Greater than 50% change in risk reduction

Outcomes	No of Participants (studies) Follow	Quality of the evidence (GRADE)	Relative effect (95% CI)	Anticipated absolute effects	
	up			Risk with Anticoagulation alone	Risk difference with Catheter assisted thrombus removal (95% CI)
All Cause Mortality	209 (1 study) 3 months	$\oplus \oplus \ominus \ominus$ LOW ^{2,3} due to imprecision	RR 0.43 (0.08 to 2.16)	46 per 1000 ¹	26 fewer per 1000 (from 43 fewer to 54 more)
Recurrent VTE	189 (1 study) 3 months	$\oplus \oplus \ominus \ominus$ LOW ^{2,3} due to imprecision	RR 0.61 (0.3 to 1.25) ⁵	Moderate risk po 48 per 1000	pulation ⁴ 19 fewer per 1000 (from 34 fewer to 12 more)
Major bleeding	224 (2 studies) 3 months	$\oplus \oplus \ominus \ominus$ LOW ^{2,3} due to imprecision	RR 7.69 (0.4 to 146.9) ⁵	Moderate risk po 29 per 1000	pulation^{4,6} 194 more per 1000 (from 17 fewer to 1000 more)
Postthrombotic syndrome	189 (1 study) 2 years	$\begin{array}{c} \oplus \oplus \oplus \ominus \\ \mathbf{MODERATE}^2 \\ \text{due to imprecision} \end{array}$	RR 0.74 (0.55 to 1) ⁹	Moderate risk po 588 per 1000	
Patency	189 (1 study) 6 months	⊕⊕⊕⊖ MODERATE ³ due to imprecision	RR 1.42 (1.09 to 1.85)	455 per 1000 ¹⁰	191 more per 1000 (from 41 more to 386 more)
Quality of Life	189 (1 study) 24 months				The mean quality of life in the intervention groups was 0.2 higher (2.8 lower to 3 higher) ^{11,12}

Table 14: Summary of Findings - Catheter assisted thrombus removal vs anticoagulation alone for acute leg DVTBibliography: Watson et al.⁷⁴ used for all outcomes except Patency and QoL. Enden et al.⁷⁵ used for Patency estimates. Enden et al.⁷⁶

*The basis for the **assumed risk** (e.g. the median control group risk across studies) is provided in footnotes. The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio;

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

¹ Reported deaths from Enden et al. (CAVENT)⁷

² Confidence interval includes values suggesting both benefit and harm

³ Low number of events

⁴ Baseline risks for non-fatal recurrent VTE and for major bleeding derived from Douketis et al.⁷⁷

⁵ Estimate taken from Watson et al.⁷⁴. The one study included for this outcome was Enden et al. (CAVENT)⁷⁵

Most of bleeding events occur during the first 7 days

⁷ This estimate is based on the findings of the VETO study.⁷⁸
 ⁸ For severe PTS, assuming the same RR of 0.46 and a baseline risk of 13.8%⁷⁸, the absolute reduction is 75 fewer severe PTS per

¹⁰ Reported patency from Enden et al. (CAVENT)⁷⁵ provides an estimate RR of 0.93 (0.61, 1.42) via Watson et al.⁷⁴

¹¹ Disease-specific QOL (VEINES-QOL) estimate used at 24 months according to treatment allocation

¹² Generic QoL (EQ-5D) at 24 months according to treatment allocation estimate is MD 0.04 (-0.01 to 0.17) ¹³ Open-label

ACCEPTED MANUSCRIPT

Major contraindications ¹	
Structural intracranial disease	
Previous intracranial hemorrhage	
Ischemic stroke within 3 months	
Active bleeding	
Recent brain or spinal surgery	
Recent head trauma with fracture or brain injury	
Bleeding diathesis	
Relative contraindications ²	
Systolic blood pressure >180	
Diastolic bleed pressure >110	
Recent bleeding (non-intracranial)	
Recent surgery	
Recent invasive procedure	
Ischemic stroke more that 3 months previously	
Anticoagulated (e.g. VKA therapy)	
Traumatic cardiopulmonary resuscitation	
Pericarditis or pericardial fluid	
Diabetic retinopathy	
Pregnancy	
Age >75 years	
Low body weight (eg, <60 kg)	
Female	
Black race	

Table 15: Risk factors for bleeding with, and contraindications to use of, thrombolytic therapy (both systemic and locally administered)

1. The presence of major contraindications usually precludes use of thrombolytic therapy and, consequently, these factors have not been well studied as risk factors for bleeding associated with thrombolytic therapy. Patients with one or more major contraindication are usually considered to be "high risk for bleeding with thrombolytic therapy" The factors listed in this table are consistent with other recommendations for the use of thrombolytic therapy in patients with PE.⁷⁹⁻⁸³

2. Risk factors for bleeding during anticoagulant therapy that are noted in Table 11 "Risk factors for bleeding with anticoagulant therapy and estimated risk of major bleeding in low, moderate and high risk categories" that are not included in this table are also likely to be relative contraindications to thrombolytic therapy. The increase in bleeding associated with a risk factor will vary with: 1) severity of the risk factor (e.g. extent of trauma or recent surgery); and 2) temporal relationships (e.g. interval from surgery or a previous bleeding episode; believed to decrease markedly after ~2 weeks). Risk factors for bleeding at critical sites (e.g. intracranial or intraocular) or non-compressible sites are stronger contraindications for thrombolytic therapy.

Depending on the nature, severity, temporality and number of relative contraindications, patients may be considered "high risk of bleeding with thrombolytic therapy" or "non-high risk for thrombolytic therapy". Patients with no risk factors, one or two minor risk factors (e.g. female and black race), are usually considered "low risk of bleeding with thrombolytic therapy".

Among 32,000 Medicare patients (\geq 65 years) with myocardial infraction who were treated with thrombolytic therapy, the following factors were independently associated with intracranial haemorrhage: age \geq 75 years (odds ratio [OR] 1.6); Black (OR1.6); female (OR 1.4); previous stroke (OR 1.5); systolic blood pressure \geq 160 mmHg (OR 1.8); women \leq 65 kg or men \leq 80Kg (OR 1.5); INR >4 (OR 2.2)⁸⁴. The rate of intracranial haemorrhage increased from 0.7% with 0 or 1 of these risk factors, to 4.1% with \geq 5 risk factors. Among 32,000 patients with myocardial infraction who were treated with thrombolytic therapy in 5 clinical trials, the following factors were independently associated with moderate or severe bleeding: older age (OR 1.04 per year); Black (OR1.4); female (OR 1.5); hypertension (OR 1.2); lower weight (OR 0.99 per kg).⁸¹

We estimate that systemic thrombolytic therapy is associated with relative risk of major bleeding of 3.5 within 35 days (relative risk ~7 for intracranial bleeding); about three quarters of the excess of major bleeds with thrombolytic therapy occur in the first 24 hours.⁸⁵

Bibliography Outcomes	No of Participants (studies) Follow	Quality of the evidence (GRADE)	Relative effect (95% CI)	Anticipated absolute effects	
	up			Risk with No Temporary Inferior Vena Caval Filter in addition to anticoagulation	Risk difference with Temporary Inferior Vena Caval Filter (95% CI)
All Cause Mortality	399 (1 study) 3 months	$\begin{array}{c} \bigoplus \bigoplus \bigoplus \bigoplus \\ \textbf{MODERATE}^{3,4} \\ \text{due to imprecision} \end{array}$	RR 1.25 (0.6 to 2.6)	60 per 1000	15 more per 1000 (from 24 fewer to 96 more)
Recurrent PE	399 (1 study) 3 months	$\begin{array}{c} \bigoplus \bigoplus \bigoplus \bigoplus \\ \textbf{MODERATE}^{3,4} \\ \text{due to imprecision} \end{array}$	RR 2.00 (0.51 to 7.89)	15 per 1000	15 more per 1000 (from 7 fewer to 104 more)
Major Bleeding	399 (1 study) 3 months	$\begin{array}{c} \bigoplus \bigoplus \bigoplus \bigoplus \\ \textbf{MODERATE}^{3,4} \\ \text{due to imprecision} \end{array}$	RR 0.80 (0.32 to 1.98)	50 per 1000	10 fewer per 1000 (from 34 fewer to 49 more)

Table 16: Summary of Findings - Temporary Inferior Vena Caval Filter vs No Temporary Inferior Vena Caval Filter in addition to anticoagulation for acute DVT or PE 1,2

*The basis for the **assumed risk** (e.g. the median control group risk across studies) is provided in footnotes. The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio;

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

¹ All patients received full-dose anticoagulant therapy according to guidelines for at least 6 months

² Filter removal was attempted in 164 patients and successful for 153 (93.3%)

³ CI includes values suggesting no effect and values suggesting either benefit or harm

⁴ Small number of events

Outcomes	No of Participants (studies) Follow	Quality of the evidence (GRADE)	Relative effect (95% CI)	Anticipated absolute effects	
	up			Risk with No elastic compression stockings	Risk difference with Elastic compression stockings (95% CI)
PTS	803	$\oplus \oplus \oplus \ominus$	RR 1.01	Moderate risk p	opulation ²
Villalta	(1 study)	MODERATE ⁴	$(0.86 \text{ to } 1.18)^3$	479 per 1000	5 more per
Score ¹	6 months	due to imprecision		•	1000
					(from 67 fewer
					to 86 more)
Recurrent	803	$\oplus \oplus \oplus \ominus$	RR 0.84	Moderate risk population ⁵	
VTE	(1 study)	MODERATE ^{4,7}	$(0.54 \text{ to } 1.31)^6$	210 per 1000	34 fewer per
	6 months	due to imprecision			1000
					(from 97 fewer
			(to 65 more)
Acute Leg	742	$\oplus \oplus \oplus \Theta$		The mean acute	The mean
Pain	(1 study)	MODERATE ^{7,9}		leg pain in the	acute leg pain
	60 days	due to imprecision		control groups	in the
				was	intervention
				1.13 leg pain	groups was
				severity assessed on an	0.26 higher (0.03 lower to
				assessed on an 11-point	$(0.05 \text{ lower to})^8$
				numerical pain	0.55 mgher)
				rating scale ⁸	
Quality of	803	$\oplus \oplus \oplus \oplus$		0	The mean
Life	(1 study)	HIGH			quality of life
					in the
					intervention
					groups was
					0.12 lower
					(1.11 lower to
					0.86 higher) ^{10,11}

Table 17: Summary of Findings - Elastic Compression Stockings vs No Elastic Compression Stockings to Prevent PTS of the leg

*The basis for the **assumed risk** (e.g. the median control group risk across studies) is provided in footnotes. The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio;

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

¹ For included studies, number of post-thrombotic syndrome events as assessed by Villalta's criteria

² This estimate is based on the findings of the VETO study⁷

³ There were three studies originally included for this outcome (Brandjes et al.⁸⁹, Prandoni et al.⁹⁰ and Kahn et al. (SOX).⁸⁷) There was very high heterogeneity between the three studies, $1^2 = 92\%$ (p<0.01). The pooled effect of the three studies was RR 0.63 (0.35 to 1.13). Yet, because of the high risk of bias associated with Brandjes et al.⁸⁹ and Prandoni et al.⁹⁰, it was decided to focus on the estimate of the low risk trial, Kahn et al. (SOX)⁸⁷, which is used here

⁴ Low number of events

⁵ This estimate is the mean of two estimates derived from two studies: 12.4% probable/definite VTE^{91} and 29.1% confirmed $VTE^{.92}$ ⁶ There were three studies originally included for this outcome (Brandjes et al.⁸⁹, Prandoni et al.⁹⁰ and Kahn et al. (SOX).⁸⁷). The pooled effect of the three studies was RR 0.91 (0.65 to 1.27). Yet, because of the high risk of bias associated with Brandjes et al.⁸⁹ and Prandoni et al.⁹⁰, it was decided to focus on the estimate of the low risk trial, Kahn et al. (SOX).⁸⁷, which is used here

⁷ CI includes values suggesting no effect and values suggesting either benefit or harm

⁸ Estimate derived from Kahn et al.⁸

⁹ Wide CI that includes no effect

¹⁰ Estimate based on VEINES-QOL score improvement of 5.8 points (SD 7.5) for active ECS versus 5.9 (SD 7.1) for placebo ECS ¹¹ SF-36 physical component score improved by 8.4 points (SD 13.6) for active ECS versus 9.9 (SD 13.2) for placebo ECS (difference

between groups of -1.53 points, 95% CI -3.44 to 0.39; p=0.12)

Outcomes	No of Participants (studies) Follow	Quality of the evidence (GRADE)	Relative effect (95%	Anticipated absolute effects	
	up		CI)	Risk with Anticoagulation alone	Risk difference with Systemic thrombolytic therapy (95% CI)
All Cause	2115	$\oplus \oplus \oplus \ominus$	OR 0.53	39 per 1000 ¹	18 fewer per
Mortality	(17 studies)	MODERATE ³	(0.32 to	-	1000
		due to imprecision	$(0.88)^2$		(from 5 fewer to 26 fewer)
Recurrent	2043	$\oplus \oplus \oplus \ominus$	OR 0.40	30 per 1000 ¹	18 fewer per
PE	(15 studies)	MODERATE ³	(0.22 to		1000
		due to imprecision	0.74) ⁴		(from 8 fewer to 24 fewer)
Major	2115	$\oplus \oplus \oplus \oplus$	OR 2.73	34 per 1000 ¹	54 more per
bleeding	(16 studies)	HIGH	(1.91 to	-	1000
0			3.91) ⁵		(from 29
					more to 87
					more)
Intracranial	2043	$\oplus \oplus \oplus \ominus$	OR 4.63	2 per 1000 ¹	7 more per
Hemorrhage	(15 studies)	MODERATE ³	(1.78 to	-	1000
0		due to imprecision	$(12.04)^6$		(from 2 more
		-			to 21 more)

Table 18: Summary of Findings - Systemic thrombolytic therapy vs. anticoagulation alone for acute PE

*The basis for the assumed risk (e.g. the median control group risk across studies) is provided in footnotes. The corresponding risk (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CD.

CI: Confidence interval; OR: Odds ratio;

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

¹ Majority (83%) of participants in Chatterjee et al.⁹³ were "moderate" risk.

² Estimate from Chatterjee et al.⁹³. Other estimates from meta-analyses on this topic include: Dong et al.⁹⁴ - OR 0.89 (0.45, 1.78) Cao

et al. 95 - RR 0.64 (0.29, 1.40) Marti et al. 96 - OR 0.59 (0.36 - 0.96) Nakamura et al. 97 - RR 0.72 (0.39, 1.31) Chatterjee et al. (Intermediate-Risk PE Only) 93 - OR 0.46 (0.25 - 0.92) Marti et al. (Intermediate-Risk PE Only) 96 - OR 0.42 (0.17 - 1.03)

Low number of events

⁴ Estimate from Chatterjee et al.⁹³. Other estimates from meta-analyses on this topic include: Dong et al.⁹⁴- OR 0.63 (0.33, 1.20) Cao et

⁵ Estimate from Chatterjee et al. ⁹³. Other estimates from meta-analyses on this topic include: Dong et al. ⁹⁴ - OR 0.50 (0.57, 1.26) Cao et al. ⁹⁵ - RR 0.64 (0.19, 1.05) Marti et al. ⁹⁶ - OR 0.50 (0.27 - 0.94) Nakamura et al. ⁹⁷ - RR 0.60 (0.21, 1.69) ⁵ Estimate from Chatterjee et al. ⁹³. Other estimates from meta-analyses on this topic include: Dong et al. ⁹⁴ - OR 1.61 (0.91, 2.86) Cao et al. ⁹⁵ - RR 1.16 (0.51, 2.60) Marti et al. ⁹⁶ - OR 2.91 (1.95 - 4.36) Nakamura et al. ⁹⁷ - RR 2.07 (0.58, 7.35)

⁶ Estimate from Chatterjee et al.⁹³

References

- 1. Deitcher SR, Kessler CM, Merli G, et al. Secondary prevention of venous thromboembolic events in patients with active cancer: enoxaparin alone versus initial enoxaparin followed by warfarin for a 180-day period. *Clinical and applied thrombosis/hemostasis : official journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis.* 2006;12(4):389-396.
- 2. Hull RD, Pineo GF, Brant RF, et al. Self-managed long-term low-molecularweight heparin therapy: the balance of benefits and harms. *The American journal of medicine.* 2007;120(1):72-82.
- 3. Hull RD, Pineo GF, Brant R, et al. Home therapy of venous thrombosis with long-term LMWH versus usual care: patient satisfaction and post-thrombotic syndrome. *The American journal of medicine.* 2009;122(8):762-769 e763.
- 4. Lee AY, Levine MN, Baker RI, et al. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. *N.Engl.J Med.* 2003;349(2):146-153.
- 5. Lopaciuk S, Bielska-Falda H, Noszczyk W, et al. Low molecular weight heparin versus acenocoumarol in the secondary prophylaxis of deep vein thrombosis. *Thromb Haemost.* 1999;81(1):26-31.
- 6. Lopez-Beret P, Orgaz A, Fontcuberta J, et al. Low molecular weight heparin versus oral anticoagulants in the long-term treatment of deep venous thrombosis. *J Vasc Surg.* 2001;33(1):77-90.
- 7. Meyer G, Marjanovic Z, Valcke J, et al. Comparison of low-molecular-weight heparin and warfarin for the secondary prevention of venous thromboembolism in patients with cancer: a randomized controlled study. *Arch Intern Med.* 2002;162(15):1729-1735.
- 8. Romera A, Cairols MA, Vila-Coll R, et al. A randomised open-label trial comparing long-term sub-cutaneous low-molecular-weight heparin compared with oral-anticoagulant therapy in the treatment of deep venous thrombosis. *European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery.* 2009;37(3):349-356.
- 9. Lee AY, Kamphuisen PW, Meyer G, et al. Tinzaparin vsWarfarin for Treatment of Acute Venous Thromboembolism in Patients With Active Cancer: A Randomized Clinical Trial. *Journal of the American Medical Association*. 2015;314:677-686.
- 10. Prandoni P, Trujillo-Santos J, Surico T, et al. Recurrent thromboembolism and major bleeding during oral anticoagulant therapy in patients with solid cancer: findings from the RIETE registry. *Haematologica*. 2008;93(9):1432-1434.
- Prandoni P, Lensing AW, Piccioli A, et al. Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis. *Blood.* 2002;100(10):3484-3488.

- 12. Beyth RJ, Milligan PE, Gage BF. Risk factors for bleeding in patients taking coumarins. *Current hematology reports.* 2002;1(1):41-49.
- 13. Schulman S, Kakkar AK, Goldhaber SZ, et al. Treatment of acute venous thromboembolism with dabigatran or warfarin and pooled analysis. *Circulation.* 2014;129(7):764-772.
- 14. Schulman S, Kearon C, Kakkar AK, et al. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. *The New England journal of medicine.* 2009;361(24):2342-2352.
- 15. Prins MH, Lensing AW, Bauersachs R, et al. Oral rivaroxaban versus standard therapy for the treatment of symptomatic venous thromboembolism: a pooled analysis of the EINSTEIN-DVT and PE randomized studies. *Thrombosis journal.* 2013;11(1):21.
- 16. Bauersachs R, Berkowitz SD, Brenner B, et al. Oral rivaroxaban for symptomatic venous thromboembolism. *The New England journal of medicine*. 2010;363(26):2499-2510.
- 17. Investigators E-P, Buller HR, Prins MH, et al. Oral rivaroxaban for the treatment of symptomatic pulmonary embolism. *The New England journal of medicine.* 2012;366(14):1287-1297.
- Agnelli G, Buller HR, Cohen A, et al. Oral apixaban for the treatment of acute venous thromboembolism. *The New England journal of medicine*. 2013;369(9):799-808.
- 19. Hokusai VTEI, Buller HR, Decousus H, et al. Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism. *The New England journal of medicine.* 2013;369(15):1406-1415.
- 20. Schulman S, Kearon C, Kakkar AK, et al. Extended use of dabigatran, warfarin, or placebo in venous thromboembolism. *The New England journal of medicine.* 2013;368(8):709-718.
- 21. Agnelli G, Buller HR, Cohen A, et al. Apixaban for extended treatment of venous thromboembolism. *The New England journal of medicine.* 2013;368(8):699-708.
- 22. van der Meer FJ, Rosendaal FR, Vandenbroucke JP, Briet E. Bleeding complications in oral anticoagulant therapy. An analysis of risk factors. *Arch Intern Med.* 1993;153(13):1557-1562.
- 23. Beyth RJ, Quinn LM, Landefeld S. Prospective evaluation of an index for predicting the risk of major bleeding in outpatients treated with warfarin. *American Journal of Medicine.* 1998;105:91-99.
- 24. Douketis JD, Arneklev K, Goldhaber SZ, Spandorfer J, Halperin F, Horrow J. Comparison of bleeding in patients with nonvalvular atrial fibrillation treated with ximelagatran or warfarin: assessment of incidence, case-fatality rate, time course and sites of bleeding, and risk factors for bleeding. *Arch Intern Med.* 2006;166(8):853-859.
- 25. Kuijer PMM, Hutten BA, Prins MH, Buller HR. Prediction of the risk of bleeding during anticoagulant treatment for venous thromboembolism. *Archives of Internal Medicine.* 1999;159:457-460.

- 26. Landefeld CS, McGuire E, 3rd, Rosenblatt MW. A bleeding risk index for estimating the probability of major bleeding in hospitalized patients starting anticoagulant therapy. *Am J Med.* 1990;89(5):569-578.
- 27. Palareti G, Leali N, Coccheri S, et al. Bleeding complications of oral anticoagulant treatment: An inception-cohort, prospective collaborative study (ISCOAT). *The Lancet.* 1996;348:423-428.
- Torn M, Bollen WL, van der Meer FJ, van der Wall EE, Rosendaal FR. Risks of oral anticoagulant therapy with increasing age. *Arch Intern Med.* 2005;165(13):1527-1532.
- 29. White RH, Beyth RJ, Zhou H, Romano PS. Major bleeding after hospitalization for deep-venous thrombosis. *Am J Med.* 1999;107(5):414-424.
- 30. Olesen JB, Lip GY, Hansen PR, et al. Bleeding risk in 'real world' patients with atrial fibrillation: comparison of two established bleeding prediction schemes in a nationwide cohort. *J Thromb Haemost.* 2011;9(8):1460-1467.
- 31. Kooiman J, van Hagen N, Iglesias Del Sol A, et al. The HAS-BLED Score Identifies Patients with Acute Venous Thromboembolism at High Risk of Major Bleeding Complications during the First Six Months of Anticoagulant Treatment. *PloS one.* 2015;10(4):e0122520.
- 32. Fihn SD, Callahan CM, Martin DC, McDonell MB, Henikoff JG, White RH. The risk for and severity of bleeding complications in elderly patients treated with warfarin. The National Consortium of Anticoagulation Clinics. *Ann Intern Med.* 1996;124(11):970-979.
- 33. Gage BF, Yan Y, Milligan PE, et al. Clinical classification schemes for predicting hemorrhage: results from the National Registry of Atrial Fibrillation (NRAF). *Am.Heart J.* 2006;151(3):713-719.
- 34. Lip GY, Frison L, Halperin JL, Lane DA. Comparative validation of a novel risk score for predicting bleeding risk in anticoagulated patients with atrial fibrillation: the HAS-BLED (Hypertension, Abnormal Renal/Liver Function, Stroke, Bleeding History or Predisposition, Labile INR, Elderly, Drugs/Alcohol Concomitantly) score. *J Am Coll Cardiol.* 2011;57(2):173-180.
- 35. Nieto JA, Bruscas MJ, Ruiz-Ribo D, et al. Acute venous thromboembolism in patients with recent major bleeding. The influence of the site of bleeding and the time elapsed on outcome. *J Thromb Haemost.* 2006;4(11):2367-2372.
- 36. Ruiz-Gimenez N, Suarez C, Gonzalez R, et al. Predictive variables for major bleeding events in patients presenting with documented acute venous thromboembolism. Findings from the RIETE Registry. *Thromb Haemost.* 2008;100(1):26-31.
- 37. van der Meer FJ, Rosendaal FR, Vandenbroucke JP, Briet E. Assessment of a bleeding risk index in two cohorts of patients treated with oral anticoagulants. *Thromb Haemost.* 1996;76(1):12-16.
- Pengo V, Legnani C, Noventa F, Palareti G. Oral anticoagulant therapy in patients with nonrheumatic atrial fibrillation and risk of bleeding. A Multicenter Inception Cohort Study. *Thromb Haemost.* 2001;85(3):418-422.
- 39. Fang MC, Go AS, Chang Y, et al. A new risk scheme to predict warfarinassociated hemorrhage: The ATRIA (Anticoagulation and Risk Factors in Atrial Fibrillation) Study. *J Am Coll Cardiol.* 2011;58(4):395-401.

- 40. Shireman TI, Mahnken JD, Howard PA, Kresowik TF, Hou Q, Ellerbeck EF. Development of a contemporary bleeding risk model for elderly warfarin recipients. *Chest.* 2006;130(5):1390-1396.
- 41. Fihn SD, McDonell M, Martin D, et al. Risk factors for complications of chronic anticoagulation. A multicenter study. Warfarin Optimized Outpatient Follow-up Study Group. *Ann Intern Med.* 1993;118(7):511-520.
- 42. Nieto JA, Solano R, Ruiz-Ribo MD, et al. Fatal bleeding in patients receiving anticoagulant therapy for venous thromboembolism: findings from the RIETE registry. *J Thromb Haemost.* 2010;8(6):1216-1222.
- 43. Hutten BA, Prins MH, Gent M, Ginsberg J, Tijssen JG, Buller HR. Incidence of recurrent thromboembolic and bleeding complications among patients with venous thromboembolism in relation to both malignancy and achieved international normalized ratio: a retrospective analysis. *J Clin Oncol.* 2000;18(17):3078-3083.
- 44. Jun M, James MT, Manns BJ, et al. The association between kidney function and major bleeding in older adults with atrial fibrillation starting warfarin treatment: population based observational study. *BMJ.* 2015;350:h246.
- 45. Hylek EM, Singer DE. Risk factors for intracranial hemorrhage in outpatients taking warfarin. *Ann Intern Med.* 1994;120(11):897-902.
- 46. Dentali F, Ageno W, Becattini C, et al. Prevalence and clinical history of incidental, asymptomatic pulmonary embolism: a meta-analysis. *Thromb Res.* 2010;125(6):518-522.
- 47. Hull RD, Raskob GE, Rosenbloom D, et al. Heparin for 5 days as compared with 10 days in the initial treatment of proximal venous thrombosis. *The New England Journal of Medicine.* 1990;322:1260-1264.
- 48. Lamberts M, Lip GY, Hansen ML, et al. Relation of nonsteroidal antiinflammatory drugs to serious bleeding and thromboembolism risk in patients with atrial fibrillation receiving antithrombotic therapy: a nationwide cohort study. *Ann Intern Med.* 2014;161(10):690-698.
- 49. Castellucci LA, Le Gal G, Rodger MA, Carrier M. Major bleeding during secondary prevention of venous thromboembolism in patients who have completed anticoagulation: a systematic review and meta-analysis. *J Thromb Haemost.* 2014;12(3):344-348.
- 50. Burgess S, Crown N, Louzada ML, Dresser G, Kim RB, Lazo-Langner A. Clinical performance of bleeding risk scores for predicting major and clinically relevant non-major bleeding events in patients receiving warfarin. *J Thromb Haemost.* 2013;11(9):1647-1654.
- 51. Scherz N, Mean M, Limacher A, et al. Prospective, multicenter validation of prediction scores for major bleeding in elderly patients with venous thromboembolism. *J Thromb Haemost.* 2013;11(3):435-443.
- 52. Poli D, Antonucci E, Testa S, et al. The predictive ability of bleeding risk stratification models in very old patients on vitamin K antagonist treatment for venous thromboembolism: results of the prospective collaborative EPICA study. *J Thromb Haemost.* 2013;11(6):1053-1058.
- 53. Roldan V, Marin F, Fernandez H, et al. Predictive value of the HAS-BLED and ATRIA bleeding scores for the risk of serious bleeding in a "real-world"

population with atrial fibrillation receiving anticoagulant therapy. *Chest.* 2013;143(1):179-184.

- 54. Apostolakis S, Lane DA, Buller H, Lip GY. Comparison of the CHADS2, CHA2DS2-VASc and HAS-BLED scores for the prediction of clinically relevant bleeding in anticoagulated patients with atrial fibrillation: the AMADEUS trial. *Thromb Haemost.* 2013;110(5):1074-1079.
- 55. Dahri K, Loewen P. The risk of bleeding with warfarin: a systematic review and performance analysis of clinical prediction rules. *Thromb Haemost.* 2007;98(5):980-987.
- 56. Palareti G, Cosmi B. Bleeding with anticoagulation therapy who is at risk, and how best to identify such patients. *Thromb Haemost.* 2009;102(2):268-278.
- 57. Kearon C, Ginsberg JS, Kovacs MJ, et al. Comparison of low-intensity warfarin therapy with conventional-intensity warfarin therapy for long-term prevention of recurrent venous thromboembolism. *New England Journal Medicine.* 2003;349:631-639.
- 58. Collins R, MacMahon S, Flather M, et al. Clinical effects of anticoagulant therapy in suspected acute myocardial infarction: systematic overview of randomised trials. *BMJ.* 1996;313(7058):652-659.
- 59. Yusuf S, Mehta SR, Xie C, et al. Effects of reviparin, a low-molecular-weight heparin, on mortality, reinfarction, and strokes in patients with acute myocardial infarction presenting with ST-segment elevation. *JAMA*. 2005;293(4):427-435.
- 60. Palareti G, Cosmi B, Legnani C, et al. D-dimer testing to determine the duration of anticoagulation therapy. *N.Engl.J Med.* 2006;355(17):1780-1789.
- 61. Schulman S, Granqvist S, Holmstrom M, et al. The duration of oral anticoagulant therapy after a second episode of venous thromboembolism. *The New England journal of medicine.* 1997;336:393-398.
- 62. Wells PS, Forgie MA, Simms M, et al. The outpatient bleeding risk index: validation of a tool for predicting bleeding rates in patients treated for deep venous thrombosis and pulmonary embolism. *Arch Intern Med.* 2003;163(8):917-920.
- 63. Campbell IA, Bentley DP, Prescott RJ, Routledge PA, Shetty HG, Williamson IJ. Anticoagulation for three versus six months in patients with deep vein thrombosis or pulmonary embolism, or both: randomised trial. *Bmj.* 2007;334(7595):674.
- 64. Pinede L, Ninet J, Duhaut P, et al. Comparison of 3 and 6 months of oral anticoagulant therapy after a first episode of proximal deep vein thrombosis or pulmonary embolism and comparison of 6 and 12 weeks of therapy after isolated calf deep vein thrombosis. *Circulation.* 2001;103(20):2453-2460.
- 65. Agnelli G, Prandoni P, Becattini C, et al. Extended oral anticoagulant therapy after a first episode of pulmonary embolism. *Ann Intern Med.* 2003;139(1):19-25.
- 66. Agnelli G, Prandoni P, Santamaria MG, et al. Three months versus one year of oral anticoagulant therapy for idiopathic deep venous thrombosis. Warfarin

Optimal Duration Italian Trial Investigators. *The New England journal of medicine.* 2001;345(3):165-169.

- 67. Couturand F SO, Pernod G, Mismetti P, Jego P, Duhamel E, Provost K, Bal dit Sollier C, Presles E, Castellant P, Parent F, Salaun P, Bressollette L, Nonent M, Lorillon P, Girard P, Lacut K, Guégan M, Bosson J, Laporte S, Leroyer C, Décousus H, Meyer G, Mottier D, for the PADIS-PE Investigators. Two years versus six months of oral anticoagulation after a first episode of unprovoked pulmonary embolism. The PADIS-PE multicenter, double-blind, randomized, trial. 2015.
- 68. Siragusa S, Malato A, Anastasio R, et al. Residual vein thrombosis to establish duration of anticoagulation after a first episode of deep vein thrombosis: the Duration of Anticoagulation based on Compression UltraSonography (DACUS) study. *Blood.* 2008;112(3):511-515.
- 69. Eischer L, Gartner V, Schulman S, Kyrle PA, Eichinger S, investigators A-F. 6 versus 30 months anticoagulation for recurrent venous thrombosis in patients with high factor VIII. *Annals of hematology*. 2009;88(5):485-490.
- 70. Simes J, Becattini C, Agnelli G, et al. Aspirin for the prevention of recurrent venous thromboembolism: the INSPIRE collaboration. *Circulation*. 2014;130(13):1062-1071.
- 71. Douketis JD, Gu CS, Schulman S, Ghirarduzzi A, Pengo V, Prandoni P. The risk for fatal pulmonary embolism after discontinuing anticoagulant therapy for venous thromboembolism. *Ann Intern Med.* 2007;147(11):766-774.
- 72. Brighton TA, Eikelboom JW, Mann K, et al. Low-dose aspirin for preventing recurrent venous thromboembolism. *The New England journal of medicine.* 2012;367(21):1979-1987.
- 73. Becattini C, Agnelli G, Schenone A, et al. Aspirin for preventing the recurrence of venous thromboembolism. *The New England journal of medicine.* 2012;366(21):1959-1967.
- 74. Watson L, Broderick C, Armon MP. Thrombolysis for acute deep vein thrombosis. *The Cochrane database of systematic reviews.* 2014;1:CD002783.
- 75. Enden T, Haig Y, Klow NE, et al. Long-term outcome after additional catheterdirected thrombolysis versus standard treatment for acute iliofemoral deep vein thrombosis (the CaVenT study): a randomised controlled trial. *Lancet.* 2012;379(9810):31-38.
- 76. Enden T, Wik HS, Kvam AK, Haig Y, Klow NE, Sandset PM. Health-related quality of life after catheter-directed thrombolysis for deep vein thrombosis: secondary outcomes of the randomised, non-blinded, parallel-group CaVenT study. *BMJ open.* 2013;3(8):e002984.
- 77. Douketis JD, Foster GA, Crowther MA, Prins MH, Ginsberg JS. Clinical risk factors and timing of recurrent venous thromboembolism during the initial 3 months of anticoagulant therapy. *Arch Intern Med.* 2000;160(22):3431-3436.
- 78. Kahn SR, Shrier I, Julian JA, et al. Determinants and time course of the postthrombotic syndrome after acute deep venous thrombosis. *Ann Intern Med.* 2008;149(10):698-707.
- 79. Piazza G, Goldhaber SZ. Fibrinolysis for acute pulmonary embolism. *Vasc Med.* 2010;15(5):419-428.

- 80. Jaff MR, McMurtry MS, Archer SL, et al. Management of Massive and Submassive Pulmonary Embolism, Iliofemoral Deep Vein Thrombosis, and Chronic Thromboembolic Pulmonary Hypertension: A Scientific Statement From the American Heart Association. *Circulation.* 2011.
- 81. Mehta RH, Stebbins A, Lopes RD, et al. Race, Bleeding, and Outcomes in STEMI Patients Treated with Fibrinolytic Therapy. *Am J Med.* 2011;124(1):48-57.
- 82. Todd JL, Tapson VF. Thrombolytic therapy for acute pulmonary embolism: a critical appraisal. *Chest.* 2009;135(5):1321-1329.
- 83. Konstantinides SV, Torbicki A, Agnelli G, et al. 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. *European heart journal.* 2014;35(43):3033-3069, 3069a-3069k.
- 84. Brass LM, Lichtman JH, Wang Y, Gurwitz JH, Radford MJ, Krumholz HM. Intracranial hemorrhage associated with thrombolytic therapy for elderly patients with acute myocardial infarction: results from the Cooperative Cardiovascular Project. *Stroke.* 2000;31(8):1802-1811.
- 85. Indications for fibrinolytic therapy in suspected acute myocardial infarction: collaborative overview of early mortality and major morbidity results from all randomised trials of more than 1000 patients. Fibrinolytic Therapy Trialists' (FTT) Collaborative Group. *Lancet.* 1994;343(8893):311-322.
- 86. Mesmetti, PREPIC 2 Study Group. Retrievable vena cava filter for patients with acute pulmonary embolism: A randomized clinical trial. 2015.
- 87. Kahn SR, Shapiro S, Wells PS, et al. Compression stockings to prevent postthrombotic syndrome: a randomised placebo-controlled trial. *Lancet.* 2014;383(9920):880-888.
- 88. Kahn SR, Shapiro S, Ducruet T, et al. Graduated compression stockings to treat acute leg pain associated with proximal DVT. A randomised controlled trial. *Thromb Haemost.* 2014;112(6):1137-1141.
- 89. Brandjes DP, Buller HR, Heijboer H, et al. Randomised trial of effect of compression stockings in patients with symptomatic proximal-vein thrombosis. *Lancet.* 1997;349(9054):759-762.
- 90. Prandoni P, Lensing AW, Prins MH, et al. Below-knee elastic compression stockings to prevent the post-thrombotic syndrome: a randomized, controlled trial. *Ann.Intern.Med.* 2004;141(4):249-256.
- 91. Heit JA, Mohr DN, Silverstein MD, Petterson TM, O'Fallon WM, Melton LJ, 3rd. Predictors of recurrence after deep vein thrombosis and pulmonary embolism: a population-based cohort study. *Arch Intern Med.* 2000;160(6):761-768.
- 92. Prandoni P, Noventa F, Ghirarduzzi A, et al. The risk of recurrent venous thromboembolism after discontinuing anticoagulation in patients with acute proximal deep vein thrombosis or pulmonary embolism. A prospective cohort study in 1,626 patients. *Haematologica*. 2007;92(2):199-205.
- 93. Chatterjee S, Chakraborty A, Weinberg I, et al. Thrombolysis for pulmonary embolism and risk of all-cause mortality, major bleeding, and intracranial hemorrhage: a meta-analysis. *Jama*. 2014;311(23):2414-2421.

- 94. Dong BR, Hao Q, Yue J, Wu T, Liu GJ. Thrombolytic therapy for pulmonary embolism. *The Cochrane database of systematic reviews.* 2009(3):CD004437.
- 95. Cao Y, Zhao H, Gao W, Wang Y, Cao J. Systematic review and meta-analysis for thrombolysis treatment in patients with acute submassive pulmonary embolism. *Patient preference and adherence.* 2014;8:275-282.
- 96. Marti C, John G, Konstantinides S, et al. *Systemic thrombolytic therapy for acute pulmonary embolism: a systematic review and meta-analysis.* 2014.
- 97. Nakamura S, Takano H, Kubota Y, Asai K, Shimizu W. Impact of the efficacy of thrombolytic therapy on the mortality of patients with acute submassive pulmonary embolism: a meta-analysis. *Journal of thrombosis and haemostasis* : *JTH.* 2014;12(7):1086-1095.